AmericanLifelines Alliance

A public-private partnership to reduce risk to utility and transportation systems from natural hazards and manmade threats

Guideline for Assessing the Performance of Electric Power Systems in Natural Hazard and Human Threat Events

April 2005

This report was written under contract to the American Lifelines Alliance, a public-private partnership between the Federal Emergency Management Agency (FEMA) of the Department of Homeland Security (DHS) and the National Institute of Building Sciences (NIBS).

Acknowledgments

Although many of the procedures presented here have been validated through experience and practice, this is the first time a pragmatic approach has been developed to assess *system performance*. The *Guideline for Assessing the Performance of Electric Power Systems* was developed by a team of experts in engineering and risk analysis, led by ImageCat, Inc. of Long Beach, California. A group of practicing engineers, academics and industry personnel reviewed drafts of the document to provide industry input and an American Lifelines Alliance (ALA) oversight committee monitored the guideline development work to ensure compliance with ALA project goals.

Project Team

Ronald T. Eguchi ImageCat, Inc., Long Beach, California

(Project Manager)

Dennis K. Ostrom Consultant, Canyon Country, California Ronald A. Tognazzini Consultant, Los Angeles, California

Craig E. Taylor Natural Hazards Management, Inc., Torrance, California

William Graf URS Corp., Los Angeles, California
C. B. Crouse URS Corp., Seattle, Washington
Michael Shore URS Corp., Washington D.C.

Advisory Committee

Leon Kempner Jr. Bonneville Power Administration, Vancouver, Washington

Masanobu Shinozuka University of California at Irvine, Irvine, California

James H. Wight San Diego Gas & Electric Co., San Diego, California

ALA Oversight Committee

Douglas G. Honegger D.G. Honegger Consulting, Arroyo Grande, California

Stuart Nishenko
Pacific Gas & Electric Co., San Francisco, California
William U. Savage
U.S. Geological Survey, Menlo Park, California
Joseph Steller
American Lifelines Alliance, Washington, D.C.

Table of Contents

1.0	Introduction	1
	1.1 Purpose of Guideline	1
	1.2 Intended Users	2
	1.3 Organization of Guideline	2
	1.4 Using Guideline	3
	1.5 Limitations and Qualifications	3
2.0	Overview of the Assessment Process	4
	2.1 Preparing for Natural Hazards and Human Threat Events	4
	2.2 System Performance Metrics	6
	2.3 Two-Phase Approach	8
	2.4 Three Levels of Analysis for Phase 2	9
	2.5 Methods of Analysis	. 10
3.0	Defining the Scope of the Performance Assessment	. 11
	3.1 A Roadmap for Performance Assessments	. 11
	3.2 Selecting Components for Analysis	. 12
	3.3 Inquiries	
	3.4 Key Elements of Performance Assessments	. 13
4.0	Phase 1 – Screening for Significant Hazards and Susceptibility to Damage or Disruption	. 15
	4.1 Natural Hazard Screening Tools	. 15
	4.2 Component Susceptibility Screening	. 18
	4.3 Transition to Phase 2 Evaluation	. 18
5.0	Phase 2 – Recommended Steps in Performing Level 1 through Level 3 Analyses	21
	5.1 Initial Selection of Analysis Level Based on Systematic Scoring Criteria	
	5.2 Factoring in the Source and Content of the Inquiry into Levels of Analysis	
	5.3 Recommended Tasks in Performing Level 1 through Level 3 Analyses	
	5.4 Factoring in Cost and Schedule	
	5.5 Dealing with Multiple Hazards	
6.0	Examples	
7.0	References	
7.0 ደ በ	Hazard Mans	. 4 0

List of Tables

Table 2-1	Metrics to Measure System Performance	/
Table 2-2	Matrix Relating Damage Consequence to Component or System Vulnerability	7
Table 4-1	Criteria Used in Establishing Relative Hazard Levels	16
Table 4-2	Guidelines to Evaluate Component Vulnerability to Damage or Disruption from Natural Hazards and Human Threats	20
Table 5-1	Consequence Scoring	23
Table 5-2	Selection of Appropriate Levels of Analysis	24
Table 5-3	Sample Inquiries and Suggested Levels of Analysis	25
Table 5-4	Hazard Evaluation Matrix for Electric Power Systems – Natural Hazards	30
Table 5-5	Component Evaluation Matrix for Electric Power Systems – Natural Hazards	34
Table 5-6	System Performance Evaluation Matrix for Electric Power Systems - Natural Hazards	36
Table 5-7	Hazard Evaluation Matrix for Electric Power Systems – Human Threats	37
Table 5-8	Component Evaluation Matrix for Electric Power Systems – Human Threats	38
Table 5-9	System Performance Evaluation Matrix for Electric Power Systems - Human Threats	39
Table 5-10	Range of Effort Needed to Perform Different Assessments	40

March 2005 Page iii

List of Figures

Figure 2-1	Decision-making Process for Ensuring System Performance Goals Are Met	
Figure 2-2	Two-Phase Approach Used in Guideline	8
Figure 3-1	Basic Roadmap for System Performance Assessment	11
Figure 8-1	Hazard Level Map for Earthquake	49
Figure 8-2	Hazard Level Map for Landslide	50
Figure 8-3	Hazard Level Map for Severe Wind, Hurricane Wind and Tornado	51
Figure 8-4	Hazard Level Map for Tornado Only	52
Figure 8-5	Hazard Level Map for Riverine and Coastal Flooding	53
Figure 8-6	Hazard Level Map for Ice Load	54

1.0 Introduction

Electric power systems provide energy for the production of goods and services, lighting and heating for homes and businesses, and power for communication and data processing services—all critical functions that sustain modern society. Natural hazards and human threats have the potential to damage and disrupt these systems, the consequences of which could limit both the power utility system's and community's ability to recover from the disaster. For example, a 1998 study on the effects of a large New Madrid earthquake suggested that direct and indirect economic losses due to the disruption of power could reach as high as \$5 billion (MCEER 1998). At the time of the study, very little empirical evidence was available to suggest that such a loss was even possible. In August 2003, however, a major power outage affecting eight states and approximately 50 million people in the Northeast resulted in an estimated \$4 to 10 billion of business interruption losses (Electricity Consumers Resource Council, 2004). Significant natural hazards and human threat events have the potential for causing similar serious consequences.

Electric power utilities are familiar with preparing for and responding to natural hazard events, such as strong windstorms and seasonal floods, and intentional human acts such as vandalism. Rare and extreme events like a severe earthquake, flooding of historic proportions, or a concerted terrorist attack, however, can overwhelm ordinary utility experience and preparation and can result in widespread damage and service disruption. While utilities that have experienced such severe events have generally taken steps to adequately prepare for future disasters, many others have only partially prepared, and still others are not aware of their full exposure or vulnerability to these threats.

This guideline is intended to provide electric power utilities with clear, concise, and national-scale guidance on assessing the performance of their systems during natural hazards and human threat events. It specifies procedures to follow and information to consider in performing standardized assessments. With the results of such assessments, utility owners can effectively establish and carry out risk management programs that address well-defined needs and vulnerabilities and that will ultimately help them achieve appropriate levels of performance in future events.

This guideline is an important initiative of the American Lifelines Alliance (ALA), a public-private partnership among the Federal Emergency Management Agency (FEMA) of the Department of Homeland Security (DHS), the National Institute of Building Sciences (NIBS), utility and transportation organizations, and industry experts. ALA's goal is to systematically reduce the risk from natural hazards and human threat events to the nation's utilities and transportation systems. This guideline and the other products and activities of the ALA and its partners in the private and public sector are based on best industry practice and are intended to become part of consensus-based guidance to be used throughout the nation.

1.1 Purpose of Guideline

The purpose of this guideline and the accompanying commentary is to provide a multilevel process by which the performance of electric power systems in natural hazard and human threat events can be assessed. The natural hazards addressed by this guideline include earthquakes, floods (riverine and coastal), windstorms (extreme winds, hurricane, and tornado), icing, and

ground displacements (landslides, frost heave, and settlement). It does not cover wildfires, lightning, volcanoes, or geomagnetic/solar effects. Biological hazards (trees, birds, wild life, burrowing rodents) are not addressed in this guideline. The human threats addressed include biological, chemical, radiological, blast, and cyber attacks.

The two-phase assessment process presented in this guideline may be applied to electric power systems of all sizes. The guideline delineates procedures to establish the scope of an assessment that meets the objectives of specific performance inquiries, while accommodating cost and schedule constraints. The guideline and commentary also provide ample information to define the specific steps that should be part of the assessment, the types of methods available to perform these analyses, the relative level of effort required to address a specific inquiry, and the types of expertise needed for implementation. Although this guideline does not provide detailed descriptions of analytical procedures and concepts, references are cited for the various technical topics. The commentary includes an annotated bibliography of key references that form the basis of many of the methods used or cited in this guideline and a glossary of terms and definitions.

1.2 Intended Users

This guideline is written primarily for electric power utility personnel in management, operations, engineering, maintenance, public information, risk management, and data processing. Regulatory officials, government agencies, industry groups, professional organizations, research organizations, academia, and consulting engineers may also find this guideline useful.

The application of the assessment process requires various levels of expertise and specialization depending on the topic and the level of assessment required for implementation. For relatively straightforward, lower level approaches, many organizations will be able to conduct the assessment with their own engineering and operations personnel. Special cases, particularly those related to infrequent risks, may require the participation of outside technical specialists. Examples of such cases might include special security problems dealing with human threats, assessing vulnerabilities to critical facilities from unexpected hazards (e.g., newly discovered earthquake faults), or attempting to balance efforts for multiple hazards under a utility-wide risk reduction plan.

1.3 Organization of Guideline

This guideline is organized into the following major sections:

- An overview that describes the role of the inquiry that establishes the need for a performance assessment, the major elements of the assessment process, the different phases of an assessment, and the concept of the levels of analysis (Section 2);
- Procedures that help to define the appropriate scope of an assessment (Section 3);
- Details on the Phase 1 or screening phase of the assessment (**Section 4**);
- Details on performing a Level 1, Level 2, or Level 3 analysis for Phase 2 of the assessment (Section 5);

- Examples that illustrate the application of the methodology described in the prior sections (Section 6);
- References (Section 7);
- National hazard maps for earthquake, landslide, hurricane wind and tornado, tornado only, riverine and coastal flooding hazards, and ice load hazards (Section 8); and
- A commentary that provides background information and resources to facilitate the use of this guideline (**Commentary**).

1.4 Using Guideline

This guideline and commentary contain a considerable amount of information that can be used to establish the appropriate scope of a performance assessment. Some users may choose to concentrate on the "big picture" by focusing on the overall process and how the various steps fit together. Others, particularly those with more specialized technical backgrounds, may be more interested in the details of the process. A typical approach to implementation would be to form a team of internal experts to adapt the assessment process to a specific system or facility. Collectively, this team should have specific knowledge about 1) the operations of the system, 2) past history of hazard incidents or events, and 3) system design.

1.5 Limitations and Qualifications

This guideline is not a design manual, standard, or code. Although effort has been taken to define the methodology and to develop example applications, this guideline has not undergone the rigorous process of consensus validation and revision or widespread pilot testing in the industry. The content does, nevertheless, represent the current standard of practice in assessing the performance of electric power systems in natural hazards and human threat events. The procedures presented herein are considered appropriate for implementation, but are subject to revision when improved methods become available, particularly for the assessment of human threats.

Because the goal of this guideline is to reach a wide range of users, a multilevel approach has been developed. This approach includes procedures ranging from simple ones that can be applied in a few days to more comprehensive ones that require weeks to months to complete. This guideline is structured so that both small and large utilities can carry out assessments that are appropriate to the inquiries they receive.

This guideline does not address interdependency issues that may involve other risks for the utility, especially dependency conditions on other lifelines.

Finally, this guideline should be viewed as a "living" document. As new data, information, and methods become available, the procedures in this document need to be reviewed and modified to reflect current thinking on acceptable approaches for hazard, vulnerability, and system performance assessments. In this regard, the Commentary, which contains a listing of applicable methods of analysis, becomes a key component of this guideline and should also be updated as new material becomes available.

2.0 Overview of Assessment Process

This section introduces a systematic process for assessing the performance of electric power systems subjected to natural hazards or human threat events. The components of this process have been implemented, tested, and validated by numerous utility companies and agencies throughout the United States. This guideline captures the essence of these studies and formalizes the process by presenting procedures that can be adapted to utilities of various sizes throughout the country. This process is part of identifying and implementing the actions needed to adequately assure the integrity of the system when subjected to natural hazards or human threat events. This section provides an overview of the mitigation process and where this guideline fits into that process.

2.1 Preparing for Natural Hazards and Human Threat Events

The need to assess the performance of a utility system is usually initiated by an inquiry—i.e., a question or request for information, which can be generated either internally or externally. To be responsive, the scope of the assessment must fully recognize the nature of the inquiry because the inquiry is the very essence of why an assessment is needed. The level of detail required in the assessment also can vary significantly depending on the source of the inquiry.

Figure 2-1 outlines a process for decision making that will assure acceptable system performance. The flowchart is not unique to a particular utility organization. Instead, it simply summarizes well-tested assessment and decision-making procedures currently in practice. It begins by identifying the inquiry, or the basic reason for performing the assessment. The inquiry determines the part of the system that is being considered (e.g., a single subsystem or the whole system) and explicitly or implicitly identifies the assessment metric and performance target (see Table 2-1). For example, an electric power distribution system's performance target might be the reestablishment of service to critical facilities (e.g., hospitals) within a set period of time after a large earthquake or hurricane. As illustrated in Table 2-1, there are a variety of ways in which system performance can be measured. These metrics, which are usually dictated by the inquiry triggering the need for an assessment, are discussed in Section 3.

The next three steps, which are critical in the overall performance assessment process, are highlighted in Figure 2-1. These steps represent the essence of this guideline. They identify significant hazards, assess the vulnerability of the system's components to those hazards, and assess performance of the system while the system is in a damaged state. The remaining steps in Figure 2-1 are decision-making steps that compare the results of the system performance assessment to the performance target. The scope of the inquiry and the results of the performance assessment will determine whether the performance is deemed acceptable or the system is changed to meet the performance goal. Changes may include system-response or component-response modifications (e.g., adding redundancy to vulnerable portions of the system or replacing vulnerable components) or adjustments to the performance goal.

As stated previously, this guideline focuses primarily on the steps in the three shaded boxes. The other boxes define important steps, occurring in the initial phases of decision making, that only

the user can address. For example, deciding what part of the system to analyze or determining what the appropriate performance target should be are clearly decisions that must be addressed by the user. Section 2.2 provides general guidance that will help the user frame these elements of the analysis.

This guideline does not discuss the evaluation of strategies or specific mitigation alternatives associated with the three generic performance modifications shown in the diamonds in Figure 2-1. Because mitigation actions can be essential in meeting performance targets, users of this guideline are encouraged to consult current literature on mitigation planning for lifeline systems (e.g., ASCE Monograph Series, see http://www.pubs.asce.org).

Figure 2-1. Decision-making Process for Assuring System Performance Goals Are Met

2.2 System Performance Metrics

Electric power system performance during natural hazards or human threat events is typically judged according to a set of desired outcomes or performance targets. Although performance targets may vary somewhat, depending on the system or the nature of the hazard, the most important are:

- Protect public and utility personnel safety,
- Maintain system reliability,
- Prevent monetary loss, and
- Prevent environmental damage.

Several different metrics can be used to quantify system performance relative to desired outcomes as illustrated in Table 2-1. Linking performance metrics to desired outcomes is important because it generally influences the choice of measurement methods for quantification. Some performance metrics might require specialized methods, while others may simply make use of field information or expert opinion.

The entries in the columns of Table 2-1 relate the direct measures of system performance to desired outcomes. For instance, "Casualties" and "Hazardous Materials Spillage" are shown as the performance metrics for the desired outcome of "Protect public and utility personnel safety." In other words, to protect the safety of the public and the utility employees, casualties and hazardous material spillage must be avoided. There are also indirect consequences of an unfavorable outcome that are not indicated in Table 2-1. These indirect consequences can be significant, perhaps even greater than direct consequences. For example, the financial burden placed on an electric power utility to settle liability claims or to provide for environmental cleanup in the event of a hazardous materials spill would qualify as an indirect consequence and could be costly.

A system performance analysis should consider those principal components of an electric power system that are important in achieving various desired outcomes (see Table 2-2). Most major components should be included in a performance assessment directed at safety, system reliability, and prevention of monetary loss. Assessments directed at preventing environmental damage should focus mainly on components and systems related to the containment of hazardous materials, system control (shutdown and isolation) and emergency response (maintenance and equipment).

Table 2-1. Metrics to Measure System Performance Associated with Desired Outcomes

Desired		5	System Perfo	rmance Met	rics	
Outcomes (Performance Targets)	Capital Losses (\$)	Revenue Losses (\$)	Service Disruption (% service population)	Downtime (hours)	Casualties (deaths, injuries)	Hazardous Materials Spillage
Protect public and utility personnel safety					Х	X
Maintain system reliability			Х	Х		
Prevent monetary loss	Х	Х	Х	Х		Х
Prevent environmental damage						Х

Table 2-2. Components, Facilities, and Subsystems of Electric Power Systems

•	Low Voltage Control, Protection and Communication Systems (e.g., SCADA)
•	Transmission Substations
•	Transmission Lines
•	Transmission and Communication Towers and Distribution Poles
•	Distribution Substations
•	Distribution Lines
•	Distribution Service Transformers
•	General Office, Maintenance Buildings, Operations Buildings and Their Equipment
•	Computer Equipment for Operations and Business Functions

2.3 Two-Phase Approach

This guideline's two-phase approach to performance assessment (Figure 2-2) consists of a screening phase (Phase 1) and an analysis phase (Phase 2). The advantages of a two-phase approach are numerous:

- Systems or components that are clearly not at risk can be screened out early.
- Results from the initial phase can be used to prioritize and allocate appropriate resources for subsequent, more detailed assessments.
- Sequential performance of screening and more detailed analyses offer an important means of identifying possible errors or faulty assumptions.
- The data and information needed for a more detailed analysis are often developed or uncovered in the screening phase.
- A phased approach usually allows the user to efficiently gauge the scope and cost of extensive projects relative to the anticipated consequences of hazard or threat events.

In summary, the two-phase approach provides for 1) a qualitative evaluation to determine whether the system is at significant risk and, if necessary, 2) a more comprehensive analysis to quantify system performance.

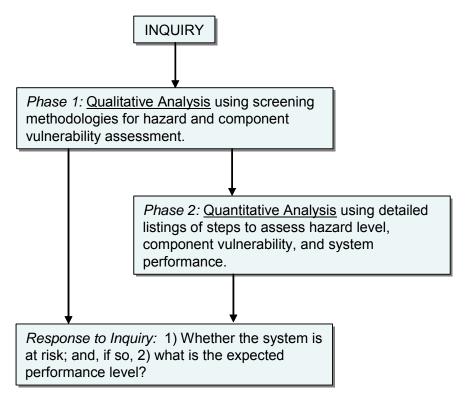


Figure 2-2. Two-Phase Approach to Performance Assessment

It is possible to arrive at a final assessment of performance after performing a Phase 1 evaluation. This can happen under a number of different scenarios. For example, the integrity of a power system may come into question because a published report states that the substations are at risk from earthquakes. A Phase 1 evaluation, however, could determine that the likelihood of a moderate to large earthquake is extremely small for the region and, thus, the risk of damage is low. If this low level of earthquake risk is less than the acceptable risk from other operational hazards that might result in similar damage consequences, then further evaluation of earthquake risk (Phase 2 analysis) would be of little practical value, and management may decide to take no further action.

A strict interpretation of the Figure 2-2 flowchart is that Phase 1 must always precede a Phase 2 evaluation. While one could skip directly to Phase 2, it is generally not advisable because, as mentioned previously, the results of Phase 1 can provide baseline information for planning and executing subsequent Phase 2 evaluations. Details of the Phase 1 screening process are presented in Section 4.

2.4 Three Levels of Analysis for Phase 2

This guideline is built on the premise that, following the screening in Phase 1, the analysis process of Phase 2 should be undertaken as a progressive, multilevel sequence of tasks, relatively simple at the lowest level and increasing in detail with each higher level. Tasks performed at lower analysis levels become part of the next higher level. Data and information collected in each lower level task are used, as applicable, at higher levels. In practice, organizations of all sizes and types use some form of this progressive, multilevel analysis process. For this guideline, three levels of analysis have been established.

The multilevel analysis concept applies to all parts of the performance assessment (see Section 5): hazard, component vulnerability, and system performance. Therefore, the three levels of analysis are defined here in generic terms:

- Level 1 is designed to provide a simplified estimate of hazard, vulnerability, or system performance. This analysis can usually be completed within a matter of days¹ and, in most cases, can be completed by operations and engineering staff. The results are considered uncertain by a factor of 2 to 3 or more and may be used to scope out the extent of the problem in order to decide whether more detailed studies are needed. If the results from this level of analysis do not satisfy the inquiry, then a higher level of analysis should be used (Level 2).
- Level 2 is characterized as an intermediate and more quantitative analysis, which often depends on historical or statistical information to quantify hazard, vulnerability, and system performance, and involves collecting data from the field. Level 2 is typically completed within a matter of weeks rather than months or years and can be performed by operations and engineering staff with assistance as needed from external technical specialists. The accuracy of the results is better than approximate, often providing

March 2005 Page 9

.

¹ Labor requirements are measured by the time required for one person working full time to complete the study. More details on this assignment are provided in Section 5.4.

quantitative results within a factor of 2 or 3. If further detail or precision is required, then a Level 3 analysis is recommended.

• Level 3 represents the highest level of analysis. It is detailed and quantitative with results accurate to the state-of-the-practice. This level is characterized by more accurate and more complete data, the use of more advanced methods (e.g., proprietary software), and will generally require the participation of external technical specialists. Level 3 analyses often require extensive fieldwork, laboratory tests, and generally take months or even years to complete.

In general, employing three levels of analysis promotes the most efficient use of resources. By planning more broadly from the beginning (Level 1) and then ramping up to more detailed evaluations as needed (Levels 2 and 3), the use of a utility's resources can be more effectively prioritized and optimized. Another advantage of using a multilevel analysis approach is that it extends the applicability of this guideline to the broadest possible range of power utility companies and the performance-related inquiries they face by avoiding the "one size fits all" approach.

2.5 Methods of Analysis

In practice, the analysis methods can vary depending on the types of data available, regional characteristics or practices, resources available (time, staff, and budget), background and experience of the analysts, the nature of the estimate, and the accuracy required.

Although there may be a myriad of acceptable analytical methods, this guideline emphasizes those believed to be the most practical for application by power utility companies. Specific techniques, procedures, and practices have been identified for use in estimating such parameters as earthquake ground motions, hurricane wind speeds, equipment fragility, and, more broadly, system performance. The use of some of these methods requires specialized background and training. The intent is to provide the user with a broad view of available methods with respect to the overall assessment process without being exhaustive or excluding new or developing techniques.

The commentary to this guideline contains a series of tables that list currently accepted (available) methods for analyzing hazard, component vulnerability, and system performance. Included in the tables are brief summaries of advantages and disadvantages, statements of applicability, and available resource documents.

March 2005 Page 10

_

² This term is used to reflect the best accuracy possible given current, accepted technologies and analysis capabilities.

3.0 Defining the Scope of the Performance Assessment

While each utility system has its own unique features, there are certain common elements among such systems that can serve as a baseline for defining the tasks required to assess system performance.

As noted in Section 2.1, the performance assessment process begins with an inquiry (a question or a request for information). The level of detail required to answer the inquiry varies depending on a number of factors. This section expands the concept of an inquiry and how it plays an important role in defining the scope of an investigation.

3.1 A Roadmap for Performance Assessments

Before responding to a particular inquiry, it is useful to view the entire assessment process. The flowchart in Figure 3-1 provides a roadmap that lays out the major phases of the assessment, key decision points for expanding the assessment to a more detailed level, and consideration of cost and schedule constraints.

The assessment process begins with an inquiry. As noted previously, inquiries are requested by either an internal source (e.g., utility management requesting a briefing on the assets at risk from a particular hazard) or an external source (e.g., a regulatory body requesting actions be taken to assure the reliability of service to customers in the event of a major natural or human threat catastrophe). In some instances, an actual event or incident may prompt an assessment from internal and external sources simultaneously. For example, an earthquake that caused damage to some part of a system not previously known to be vulnerable might prompt internal and external inquires to determine if the damage was associated with an isolated incident or an indication of a wider problem.

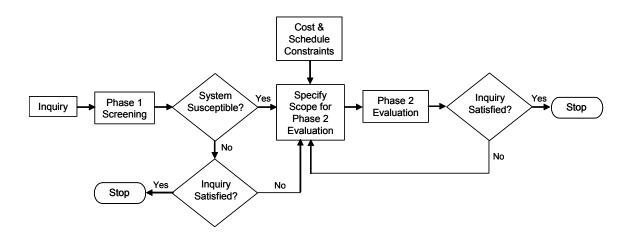


Figure 3-1. Basic Roadmap for System Performance Assessment

The second step in the flowchart calls for a Phase 1 screening evaluation (see Section 4.0). The evaluation consists of two stages: the determination of whether or not a potential significant

hazard exists and, if so, whether existing facilities are susceptible to damage or failure from that hazard. If there is no significant hazard or risk of damage from the hazard, then the analysis process can be terminated with a completed response to the inquiry. For example, some areas of the U.S. are not subject to damaging earthquakes, and as such, power systems in those areas are not at significant risk of damage from earthquake shaking.

If the inquiry is not satisfied by a Phase 1 evaluation or the system is determined to be susceptible to damage or loss of function for the hazard under evaluation, a Phase 2 evaluation becomes necessary. The scope for the Phase 2 evaluation should contain an appropriate level of detail and take into account cost and schedule constraints. (See Sections 5.1 and 5.2 for guidance on determining the appropriate level of analysis).

Once the analysis level has been determined, a step-by-step list of the needed tasks should be compiled (see Section 5.3). The task list is similar to a scope of work in a Request for Proposal. The scope of work may be performed within the normal activity of a utility operations or engineering department, or may be more involved and require the participation of additional technical specialists with extensive background and experience.

The process in Figure 3-1 is sequential. In practice, however, the process may be cyclic, requiring several iterations to determine the appropriate level of analysis. The process, whether sequential or cyclic, basically remains the same:

- Screen the hazard severity and assess the generic vulnerability of the system to that hazard to determine the need for a more detailed evaluation;
- Ensure that adequate resources and expertise are available to perform the evaluation; and
- Determine the appropriate level of analysis based on the inquiry and available resources and schedule.

3.2 Selecting Components for Analysis

The components to be included in the analysis depend in large part on the inquiry and the performance target being investigated. For example, in the case of a customer approaching a utility about the reliability of the system to provide power to its facility in a major earthquake, the utility must decide which components should be assessed. Reliability in this scenario is measured by service disruption (outage areas) and downtime (Table 2-1). The utility uses Table 2-2 to identify critical components and finds that all the components listed in the table should be considered.

3.3 Inquiries

Because inquiries can come from a variety of sources inside or outside the utility, the effort to develop a response can range from a matter of a few hours to a significant commitment of resources. It is impossible to come up with a list of inquiries for every conceivable situation. The following list of inquiries is representative (see Table 5-3 in Section 5.2 for a more extensive list).

Internal Inquiries

- Upper management requesting information on general financial exposure
- Addressing risk management or insurance issues
- Defining the scope of capital improvement programs
- Evaluating utility performance goals (reliability)
- Assessing post-hazard service to emergency facilities (e.g., hospitals)
- Preparing exercises and training for event response
- Conducting an internal investigation following a disaster that causes unexpected damage or impacts

Outside Inquiries

- Inquiry by a regulatory body (system exposure)
- Inquiry by a regulatory body (hazard concern)
- Inquiry by a regulatory body (consequence concern)
- Customer questions about the reliability of service
- Investor concerns, primarily for private utilities
- Changes in law or operating requirements (depends on the change)
- Inquiries by the press or the public
- Interaction with professional organizations
- In response to a bond-rating process
- External investigation following a disaster that causes unexpected damage or impacts

As discussed in Section 5.2, the nature and type of inquiry will influence, to a large degree, the recommended level of analysis. Although there are no specific rules that define the levels of analysis for specific inquiries, experience suggests that there are practical levels of analysis for certain general conditions and situations.

3.4 Key Elements of Performance Assessments

The major elements of a performance assessment are Hazard (H), Vulnerability (V), and System Performance (S). The following list of hazards, vulnerabilities, and system performance issues addressed in this guideline represent the most critical considerations for most performance assessments and is not intended to be a complete compilation of all possible considerations:

- *Hazard* includes natural hazards and human threats, including:
 - Earthquakes
 - Flooding
 - Windstorms, including hurricanes and tornados
 - Icing
 - Ground displacements, including landslides, frost heave, and settlement
 - Biological threats

- Chemical threats
- Radiological threats
- Blast
- Cyber attacks
- Physical attacks, including armed intrusion and sabotage
- *Vulnerability* includes the potential for physical damage and loss of life with respect to:
 - Physical facilities
 - Functional systems
 - Environment
 - Administrative/financial activities
 - Human safety
- System Performance includes the consequences resulting from system damage or disruption as measured by:
 - Capital and revenue losses
 - Service disruption and downtime
 - Casualties
 - Hazardous materials release and environmental damage

Each of the three elements must be subjected to a series of analyses, the results of which are linked together to form a consistent methodology to estimate system performance. There are three levels of analysis that can be performed (see Section 2.4): a Level 1 analysis represents the simplest and least time-consuming level of effort; a Level 2 analysis is more quantitative and of moderate scope; and a Level 3 analysis is an extensive effort likely requiring significant resources and time to complete.

A performance assessment involves the selection of an appropriate level of analysis within each of the three elements. In aggregate, they constitute an appropriate approach for responding to an inquiry. For example, the recommended approach for an inquiry may call for a simplified hazard analysis (<u>Hazard analysis</u>—Level 1), a moderately detailed analysis of component fragility (<u>Vulnerability analysis</u>—Level 2), and a simplified (qualitative) systems analysis (<u>System Performance analysis</u>—Level 1). The primary emphasis in this example is on component performance with a secondary concern on how this performance will affect the overall operation of the system. In this guideline, the above analysis is simply denoted as an H1-V2-S1 analysis.

By using three levels of analysis, the performance assessment can be tailored to the content of the inquiry (the level of detail required to appropriately characterize the hazard, vulnerability, and system performance) and to the source of the inquiry (the appropriate level of detail needed for the regulatory agency, government, investment entities, insurers, customers, the public, or utility management). In other words, different types of inquiries lead to different levels of assessment depending on their source, the context in which the inquiry is being made, and the underlying considerations for hazard, vulnerability, and system performance.

4.0 Phase 1–Screening for Significant Hazards and Susceptibility to Damage or Disruption

The purpose of a Phase 1 evaluation (introduced in Section 3.1) is to screen out a component or system evaluation if any of the following conditions are met:

- There are no significant hazards affecting the component or system, or
- The component or the system as a whole is not susceptible to damage or failure if subjected to the hazard(s) under consideration.

A system may be subjected to some hazard types, but not necessarily to all hazard types. Similarly, a system may be susceptible to damage or failure from some hazards, but not necessarily from all hazards.

The potential for extreme human threats has been treated as ever-present since the terrorist attacks of September 11, 2001. Consequently, Phase 1 screening should not rule out human threats on the basis of not being present or not capable of causing damage. Quite simply, there are no simple screening tools that will effectively identify or eliminate the presence of these threats. Therefore, for the assessment of human threat events, Phase 1 screening should be bypassed in favor of proceeding directly to Phase 2.

4.1 Natural Hazard Screening Tools

Natural hazards are identified as "local" and "regional" hazards. Local hazards are ones that can be characterized only by conducting fieldwork or by using microzonation maps (when available). This guideline defines local hazards as riverine flooding, landslides, surface fault rupture, liquefaction, and settlement. Regional hazards, which can be depicted on small-scale maps such as on a national or state map, include earthquake ground shaking, severe winds (including extreme winds, hurricane and tornado), coastal flooding, and icing. Hence, the distinction between local and regional hazards is important because of the relative spatial accuracy of the information portrayed for each.

This guideline uses national maps to characterize Phase 1 hazard levels for earthquake, landslide, severe wind (hurricane and tornado), and riverine and coastal flooding. For hazards that are considered local hazards (e.g., flooding and landslides), the information on these maps is approximate and quite conservative in the sense that the presence of local hazards within a jurisdiction causes the entire jurisdiction to be classified according to the severity of the local hazard itself. A county, for example, could be classified as high risk for landslides because a relatively small portion of the county land area is situated on unstable slopes. Or, it could be considered hazardous for flooding with only a small area within an active floodplain. Therefore, it should be recognized that local hazards have a site-specific aspect that must be taken into account. The presence of local hazards anywhere within a designated county serves, for the purposes of a Phase 1 screening, as the basis for classifying the county at a moderate or high hazard level. Considering the qualitative and approximate nature of Phase 1 screening, this does not cause an undue hindrance.

Table 4-1 summarizes the criteria used to establish low, moderate, and high hazard levels for earthquake, landslide, wind, tornado, icing, flooding, and human threats. The values in Table 4-1 are considered to represent reasonable separation points or boundaries. Additional discussion of the range boundaries is provided in Section 3 of the commentary.

Hazard Level	Earthquake ¹	Landslide	Wind	Tornado	lcing ²	Flooding ³	Human Threats ³
Low	Peak Ground Acceleration (PGA) < 0.15 g	Low incidence	Not high or moderate	< 5 tornadoes per 10,000 sq. mi.	≤ 0.25 in.	Q3 data not available for the county	ES-ISAC Green (Low)
Moderate	0.15 g ≤ PGA ≤ 0.5 g	Moderate Incidence or moderate susceptibility/ low incidence	Wind speed > 90 mph, but < 120 mph	5 to 25 tornadoes per 10,000 sq. mi.	Greater than 0.25 in. and less than 1.0 in.	Q3 data available for the county	ES-ISAC Blue (Guarded) to Yellow (Elevated)
High	PGA > 0.5 g High incidence or high susceptibility/ moderate incidence or high susceptibility/ moderate incidence or high susceptibility/ greater		Wind speed ≥ 120 mph, or Gulf/Atlantic county whose basic wind speed is 110 mph or greater, or Hawaii	> 25 tornadoes per 10,000 sq. mi.	≥ 1.0 in.	Q3 data available for the county	ES-ISAC Orange (High) to Red (Severe)

Table 4-1. Criteria Used in Establishing Relative Hazard Levels

Notes:

- In establishing the earthquake hazard, the Guideline uses earthquake hazard maps depicting ground motions with a probability of
 exceedance equal to two percent in 50 years.
- 2. In establishing the icing hazard, the Guideline uses ASCE 7-05, Minimum Design Loads for Buildings and Other Structures. These maps represent 50-year mean recurrence interval uniform ice thicknesses due to freezing rain.
- 3. The digital Q3 Flood Data published by FEMA are designed to provide guidance and a general proximity of the location of Special Flood Hazard Areas. The digital Q3 Flood Data cannot be used to determine absolute delineation of flood risk boundaries, but instead should be seen as portraying zones of uncertainty and possible risks associated with flood inundation.

Hazard level maps for earthquake, landslide, severe wind (hurricane and tornado), tornado only, and riverine and coastal flooding are contained in Section 8. Each map is derived from a federal or state database. The information contained in each map is also available digitally, which makes the use of these maps very compatible with a "look-up" procedure. A comprehensive tabular listing of hazard levels by county (with exception of icing and human threats) is provided in the commentary.

The most significant hazards in Table 4-1 for electric power systems are earthquake, including various types of earthquake-induced ground failure; severe wind (hurricane and tornadoes); icing; and human threats, such as terrorist attacks. Landslides and flooding can also cause damage to power system components, but to a lesser degree because of the limited portion of the system components typically exposed to these hazards in any one hazard event. Insignificant hazards conspicuous enough to have become the subject of an inquiry will typically be eliminated from consideration in the Phase 1 screening.

³ Levels based on Electric Sector – Information Sharing and Analysis Center (ES-ISAC at http://www.esisac.com/) for physical or cyber threat levels. References: NERC (2002a); NERC (2002b).

Information on other time-dependent, weather-related natural hazards, such as wildfire and flooding, can be obtained through federal websites that have seasonal or more frequent updates—e.g., http://drought.unl.edu/dm, USGS/NWS flood advisories. Information can be found about: geomagnetic/solar hazards from www.noaa.gov; volcanoes from www.usgs.gov; and wildlife from www.usda.gov.

The time-dependent nature of human threat levels has been considered in developing the separation points for human threats in Table 4-1. The hazard level criteria in particular are based on the ES-ISAC threat alert levels, which were developed after the terrorist attacks on September 11, 2001. The high hazard level is based on the Orange (High) and Red (Severe) threat alert levels and the existence of specific, credible information about a human threat against the electric power industry. The moderate hazard level is based on the Blue (Guarded) and Yellow (Elevated) threat alert levels and nonspecific, general information about the potential for a human-caused disruption of service. The threat alert levels have not fallen below Yellow (Elevated) or gone above Orange (High), which seems appropriate for the performance evaluations that have been conducted on electric power systems with respect to human threat events since the alerts were established. The low hazard level is based on the ES-ISAC Green (Low) threat alert level and the existence of no known threats to the electric power industry other than normal human threats, such as vandalism, which are generally tracked through reporting systems established by State Public Utilities Commissions.

When using national hazard maps with this guideline, the user should bear in mind several cautions:

- 1) The "county level" for data mapping is used because it represents a reasonable and convenient geographic unit to map data (hazards) on a national level. The county level works better in states with smaller counties, which generally means areas east of the Rocky Mountains. The limitations of using small-scale maps to portray local hazards must be fully recognized, as discussed earlier in this section.
- 2) When using maps for characterization of hazards at the national or local level, the choices of separation points for low, moderate, and high hazards must be established consistent with the underlying basis for the selected map. For example, the use of the earthquake hazard maps produced by the U.S. Geological Survey for the United States and its territories are associated with 2, 5, and 10 percent probabilities of exceeding the mapped ground-motion values in 50 years. Naturally, the ground-motion values on these maps increase with the decreasing probability of exceedance. Current building codes, such as the 2003 International Building Code (ICC 2002) or NFPA (2003), use ground-motion criteria based on a 2 percent probability of exceedance in 50 years. This same probability of exceedance is adopted in this guideline. Power companies, however, might elect to base Phase 1 screening and the determination of analysis levels on different probabilities of exceedance. The methodology provided in this guideline should accommodate the various types of maps with their associated probabilities of exceedance, but due consideration should be given to the choice of appropriate criteria separation points for low, moderate, and high hazard levels.

- 3) ASCE-7 identifies special wind zones that require site-specific input from local building jurisdictions (local maps typically delineating special wind hazard areas). Such areas do not exist unless the wind hazard is significant; therefore, the existence of "special" wind zones is probably sufficient evidence to indicate a need for a Phase 2 evaluation.
- 4) Some caution should be exercised in the interpretation of flood hazard levels from the map provided in this guideline (Figure 8-5). The low level separation point for the flooding hazard in Table 4-1 is keyed to the existence of Q3 maps (FEMA 1996, 2003). If a Q3 map is not available, then the hazard is assumed to be generally low. However, if a "local" flood hazard is known to exist for the area of consideration despite the absence of a Q3 map, then the assessment should be upgraded to a Phase 2 evaluation.

4.2 Component Susceptibility Screening

The second stage of the Phase 1 screening process addresses component vulnerability. Table 4-2 provides qualitative information, based on judgment from experienced practitioners, on the vulnerability of key electric power system components. The table is intended to serve as a general guide for typical components and noncritical components. Special circumstances may exist that would cause a particular component, facility, or system to be more or less vulnerable than indicated in Table 4-2. In the case of components or systems that are critical to overall system operations, it may be prudent to skip this screening step and proceed directly to a Phase 2 assessment. For example, if the consequence of failure from a critical component is high (e.g., it impacts a sizable portion of the service population or impact service to major customers), then a Phase 2 assessment is recommended.

The entries in Table 4-2 identify the general degrees to which electric system components are potentially vulnerable to the hazards and threats described in this guideline. The entries are either in the form of an unqualified "H", "M", or "L" (high, moderate, or low) or may include consideration of conditions or situations under which a particular component may be vulnerable. Usually these distinctions consider whether or not a component is located above or below the ground. In general, belowground components tend to be vulnerable to permanent ground movement hazards (surface fault rupture, liquefaction, landslide, frost heave, and settlement). Aboveground components will be affected more by earthquake ground shaking, flooding, wind, icing, and other collateral hazards (fire, dam inundation, collapses of nearby structures, and some human threats such as blasts). The absence of an entry in a particular cell indicates that the corresponding component is not likely to be susceptible to damage or disruption regardless of what hazard level is expected. The entries in Table 4-2 assume that the component is of recent vintage, i.e., post 1945. If the component being evaluated is older than this, it may be more susceptible to damage. In these cases, the original design may not have accounted for some of these hazard types. In such situations, a Phase 2 evaluation is appropriate.

The user will also have to make a choice on what vulnerability level to select for an analysis that includes multiple components or facilities. In these cases, this guideline recommends that all components that should be a part of an assessment (see Section 3.2) be evaluated and the highest level of vulnerability for the group be used to define the level of analysis.

4.3 Transition to Phase 2 Evaluation

Even though the results from Phase 1 suggest otherwise, there may be several reasons to proceed to a Phase 2 evaluation. Some of these reasons include:

- A quantitative response to an inquiry is deemed necessary.
- A known localized hazard exists that is not identified by national-level hazard maps,
- The hazard under assessment is a human threat.
- There are known incidents or failures that suggest a higher level of vulnerability than is implied by Table 4-2.
- The component under assessment is extremely critical to system operations.
- Maintaining service is vital to national security.

As a general rule, if eliminating any subsequent studies (based on the results of the Phase 1 evaluation) appears questionable, the user should proceed to Phase 2. The most adverse result from this decision is that a Level 1 analysis is performed.

Table 4-2. Degree of Component Vulnerability to Damage or Disruption from Natural Hazards and Human Threats

	Degree of Vulnerability									
Hazards	Low Voltage Control, Protection and Communication Systems (e.g., SCADA)	Transmission Substations	Transmission Lines	Transmission and Communication Towers and Distribution Poles	Distribution Substations	Distribution Lines	Distribution Service Transformers	General Office, Maintenance Buildings, Operations Buildings and Their Equipment	Computer Equipment for Operations and Business Functions	
Natural Hazards										
Earthquake Shaking	М	Н	-	-	M	M	М	М	М	
Earthquake Permanent Ground Deformations (fault rupture, liquefaction, landslide, and settlement)	-	М	Н	Н	М	Н	М	Н	-	
Ground Movements (landslide, frost heave, and settlement)	-	М	Н	Н	М	Н	М	Н	-	
Flooding (riverine, storm surge, tsunami and seiche)	Н	Н	М	Н	Н	Н	Н	Н	L	
Wind (extreme wind, hurricane, and tornado)	М	М	Н	Н	М	Н	Н	М	_	
Icing	-	L	Н	L	L	Н	L	-	_	
Collateral Hazard: Blast or Fire	Н	Н	М	Н	Н	M	Н	Н	Н	
Collateral Hazard: Dam Inundation	Н	Н	Н	Н	Н	Н	Н	Н	Н	
Collateral Hazard: Nearby Collapse	М	М	М	Н	М	Н	Н	М	Н	
Human Threats										
Physical Attack (biological, chemical, radiological, and blast)	Н	Н	М	М	Н	М	М	Н	Н	
Cyber Attack	Н	-	-	-	-	-	_	М	Н	

Note

Degrees of vulnerability: H - High, M - Moderate, L - Low. When a component or system is located within a building, the vulnerability of both the building and component should be considered. For example, where there is a potential for building collapse or mandatory evacuation, the equipment housed within is at risk.

The entries in Table 4-2 assume that the component is of recent vintage, i.e., post 1945.

5.0 Phase 2–Recommended Steps in Performing Level 1 through Level 3 Analyses

For those components and systems found to be at risk in the Phase 1 screening, a Phase 2 analysis is recommended. This section introduces scoring criteria used to initiate a Phase 2 evaluation. Selection of a Level 1, Level 2, or Level 3 analysis for Phase 2 depends on factors such as the scope of the inquiry, hazard level, vulnerability level, nature of consequence, and system redundancy level.

Conducting a Phase 2 analysis generally results in some quantitative outcome, which is valuable because the performance can be assessed in terms of the metrics of performance in Table 2-1. For this reason, Phase 2 analyses are particularly useful in hazard reduction programs where the benefits and costs of mitigation can be compared directly.

Determining the appropriate level for the performance analysis is integral to Phase 2. To facilitate this decision, a set of scoring criteria is employed to determine an appropriate level of analysis based on hazard, vulnerability, and system information. This section also provides guidance on how to modify these determinations using information from the inquiry itself. A long list of inquiries serves as examples for these modifications.

The detailed tables at the end of the section identify specific tasks that should be considered under each level of analysis. Examples of the recommended types of analysis can also be found in the commentary.

5.1 Initial Selection of Analysis Level Based on Systematic Scoring Criteria

Individuals with requisite experience in risk assessment can often intuitively select the appropriate analysis levels for the hazard, vulnerability, and system performance. As an alternative to such experience and intuition, a systematic scoring procedure for determining a baseline level of analysis has been developed specifically for this guideline. The resulting baseline from scoring can be adjusted upward or downward for particular analysis elements depending on the type of inquiry, budget and schedule constraints, and consideration of specific performance measures. Examples of hazard, vulnerability, and system performance analysis levels for specific inquiries are discussed in Section 5.2.

The scoring system provides a systematic and objective process for determining an overall or baseline level of analysis for performance assessments. It is assumed that a Phase 1 screening has been completed (see Section 4) and that cases associated with no hazard or no vulnerability have been eliminated from consideration. The scoring system accounts for the:

- Severity of the hazard,
- Vulnerability of the system or component,
- Damage consequences, including life safety, financial loss, disruption of service, and environmental and other impacts,
- Degree of redundancy inherent in the system being assessed (i.e., highly redundant, redundant, or non-redundant), and

Size of the system.

The first step in the scoring process is to compute an overall level index for the performance assessment. It is defined as the product of individual severity indices for Hazard, Vulnerability, and Consequence of Damage. The index is compared to defined ranges that suggest the overall analysis level—either Level 1, Level 2, or Level 3. This evaluation must be conducted on a hazard-by-hazard basis; that is, there is no attempt at integrating the results from different hazards.

The level index I_L is defined as the product of H, V, and S.

$$I_L = H \times V \times \max (C_{LS}, C_{FL}, C_{SD}, C_{EI})$$

$$(5-1)$$

where,

H = Hazard score (Low = 1, Moderate = 2, High = 3 as defined in Table 4-1)

V = Vulnerability score (Low = 1, Moderate = 2, High = 3 as defined in Table 4-2)

S = System Performance score (the maximum of C_{LS} , C_{FL} , C_{SD} , and C_{EI})

 C_{LS} = Life safety consequence score, varies from 1 to 3 as defined in Table 5-1

 C_{FL} = Financial loss consequence score, varies from 0.5 to 6 as defined in Table 5-1

 C_{SD} = Service disruption consequence score, varies from 0.5 to 6 as defined in Table 5-1

 C_{EI} = Environmental impact consequence score, varies from 1 to 3 as defined in Table 5-1

In Table 5-1, a system-type modifier or redundancy factor (R_C) is used in the determination of the financial loss consequence score (C_{FL}) and the service disruption consequence score (C_{SD}), but not in the determination of the consequence scores for life safety (C_{LS}) and environmental impact (C_{EI}). The use of the system-type modifier accounts for the mitigation of consequences through the presence of system redundancy; that is, the effect of redundancy is to reduce the system performance consequences of damage due to a hazard event.

The system-type modifier allows the flexibility of weighting certain performance conditions differently depending on whether actual alternative sources of service are available. For example, an electric power utility may rate the system-type modifier (R_C) as 2 (non-redundant) because it has no alternative means of providing service to a critical customer; whereas, that customer may rate the redundancy factor as 0.5 because on-site back-up generators exist. Depending on the nature of the inquiry and who is performing the assessment, the service disruption factor (C_{SD}) could vary. Similar considerations for the nature of the inquiry arise when applying the system-type modifier to the financial loss factor (C_{FL}). For example, the financial loss associated with the repair of damage may not be as significant to a utility compared to an industrial customer or local community with no feasible means of providing sufficient alternative power. Typically the system-type modifier will be set to 1 unless circumstances exist to warrant adjusting the financial loss or service disruption factors.

Table 5-1. System Performance Consequence Scoring

Consequence		Severity of Consequence	
	Low	Moderate	High
Life Safety, C_{LS}	Minimal impact on life safety; no significant impact to utility personnel or the general public in the immediate area of the facility. $C_{LS} = 1$	Damage or disruption may result in some injuries to utility personnel or the general public in the immediate area of the facility. $C_{LS} = 2$	Damage or disruption will result in significant life-safety impact to utility personnel or the general public in the immediate area of the facility. $C_{LS} = 3$
Financial Loss, C_{FL}	Little or no impact on the financial resources of the utility. $C_{FL} = R_C$	Damage or disruption can result in major financial losses; losses, however, will have little or no impact on the financial integrity of the utility.	Damage or disruption will have a significant impact on the financial integrity of the utility or one or more major customers.
		$C_{FL} = 2 R_C$	$C_{FL} = 3 R_C$
Service Disruption, C_{SD}	Little or no impact on service population. $C_{SD} = R_C$	Disruption of service will impact a small portion of the service population (less than 10%) and is less than a day; and does not affect a critical customer. $C_{SD} = 2 R_C$	Disruption of service will either 1) impact a sizable portion of the service population (greater than 10%), 2) potentially affect service populations in excess of 100,000, 3) cause widespread outages for more than a day, or 4) affect the operation of a critical facility.
			$C_{SD} = 3 R_C$
Environmental Impact, C_{EI}	Little or no impact on environment. $C_{EI} = 1$	Failure or disruption can result in limited (or isolated) environmental damage. $C_{EI} = 2$	Failure or disruption can result in major environmental damage (i.e., it will take months to years to remediate). $C_{EI} = 3$

Notes

 R_C is a System Type modifier: 0.5 for highly redundant (e.g., failure of component does not degrade system performance); 1 for redundant (e.g., failure of component degrades system performance) and; 2 for nonredundant (the function served by that component cannot be alternatively served). The scoring system does not involve precise estimates. The assignment of decimal values in place of Low = 1, Moderate = 2, and High = 3 is not intended and is strongly discouraged.

The second and final step of the scoring process is to compare the level index (I_L) to a set of preset range cutoffs that define a recommended baseline level for the performance assessment. Based on all possible permutations of input parameters, the level index may range in value from 0.5 to 54. The baseline level for the performance assessment is determined by the following ranges:

Level Index (I _L)	Baseline Level for Performance Assessment
<i>I</i> _L ≤ 6	No Assessment
7 ≤ <i>I</i> _L < 17	Level 1
17 ≤ <i>I</i> _L < 35	Level 2
<i>I</i> _L ≥ 35	Level 3

Table 5-2. Selection of Appropriate Levels of Analysis

As mentioned earlier, the baseline level represents a starting point for establishing the level of analysis. Analysis levels might require upward or downward adjustment depending upon the type and source of the inquiry (see Section 5.2).

5.2 Factoring the Source and Content of the Inquiry into the Levels of Analysis

The scoring system described in the previous section indicates the recommended levels of evaluation based on hazard information, component vulnerabilities, system redundancies, and the consequences of system failure or disruption. In actual practice, the source of the inquiry and the content of the inquiry may limit or expand the levels of evaluation required. Table 5-3 contains numerous sample inquiries and the levels of evaluation that may result when one considers the source (who is asking the question) and content of the inquiry (what is being asked). These sample inquiries are developed to assist in adapting the generic assignments of evaluation level (as described in Section 5.1) to specific conditions or situations that may be prompted by a particular inquiry or inquiry source. The assessment levels associated with the sample inquiries may also be used directly to obtain a preliminary estimate of the likely scope of the assessment. In this table, H, V, and S are defined in terms of the levels of effort (see Section 2.4) required to perform a hazards, vulnerability, or systems evaluation, respectively.

There are three types of cases in Table 5-3 in which the overall scoring system may be modified by considering the source and content of the inquiry. The first type only requires a general response to an issue that may otherwise suggest a high level of effort. The general response does not end all inquiry; instead, it satisfies the party making the inquiry with respect to the level of detail required for this response. The second type occurs when the source requires a higher level of analysis than would otherwise be deemed necessary by the scoring system. In this case, the scoring system can serve as one basis for maintaining that a lower level of analysis may be desirable, if only in the initial stages of the evaluation. The third type occurs when some of the

component evaluations (for hazards, vulnerabilities, or systems) are either below or above the overall level of analysis recommended by the scoring system. In these cases, more detailed or less detailed analyses are suggested in order to more adequately address the essence of the inquiry.

Table 5-3. Sample Inquiries and Suggested Levels of Analysis for Hazards (H), Vulnerability (V), and System (S) Evaluations

Sample Inquiry Content	Source of	Level	of An	alysis	Potential Source and
	Inquiry	Н	V	S	Content Factors
Inquiry by a regulatory body on general system exposure	External	1	1	1	Source and content may limit levels required.
Customer request on reliability of service	External	1	1	1	Source may limit levels required.
3. General inquiry by the press or public	External	1	1	1	Source may limit levels required.
4. Interaction with professional associations	External	1	1	1	Source may limit levels required.
5. Inquiry by a regulatory body on location of a landslide hazard relative to a facility	External	2	1	1	Content may limit levels required.
6. Inquiry by a regulatory body on consequence of a local hazard at a facility	External	1	2	1	Scoring system may imply a Level 1 or Level 2 overall evaluation; source and content require more than a Level 1 effort.
7. Inquiry by a regulatory body on consequence of a local hazard at a critical facility	External	3	3	1	Consistent with scoring a Level 3 overall effort, except systems issues are assumed
8. Inquiry by a regulatory body on detailed evaluation of hazards relative to a cluster of facilities	External	3	1	1	Source and content imply levels of analysis suggested.
9. Inquiry by a regulatory body on detailed evaluation of a hazard relative to a facility	External	3	2	1	Source and content imply levels of analysis suggested.
10. Regulatory body wanting more detailed information on criticality and hazard design parameters	External	2	1	2	Source and content imply levels of analysis suggested.
New regulation to require a given performance level for specific hazards	External	3	3	3	Source and content imply levels of analysis suggested.

Table 5-3. Sample Inquiries and Suggested Levels of Analysis for Hazards (H), Vulnerability (V), and System (S) Evaluations

Sample Inquiry Content	Source of	Level	of An	alysis	Potential Source and
	Inquiry	Н	V	S	Content Factors
12. Regulatory body requesting detailed evaluation of potential service losses given specific localized hazards (e.g., landslides)	External	2	1	3	Source and content imply levels of analysis suggested; levels of analysis for systems evaluation may be less than 3 due to systems evaluation capabilities already present.
13. Regulatory body requesting detailed evaluation of potential single-contingency service losses with respect to specific critical facilities	External	3	3	3	Consistent with likely overall score; levels of analysis for systems evaluation may be less than 3 due to systems evaluation capabilities already present.
14. Regulatory body requesting detailed evaluation of potential service losses given detailed evaluation of localized hazards	External	3	1	3	Consistent with likely overall score.
15. Inquiry to know general information on criticality and detailed information on hazards used in new design	Internal/ External	3	1	2	May be consistent with overall score; content implies limited analysis on component vulnerability evaluations.
16. Regulatory body wanting a detailed evaluation of unexpected high system losses	Event/ External	3	3	2	Likely to be consistent with overall score.
17. Upper management wanting to know general financial exposure	Internal	1	2	1	Content implies that the focus is on expected repair and replacement cost forecasts.
18. Addressing risk management or insurance issues	Internal	1	2	1	Content implies a major focus on repair and replacement cost forecasts.
19. Investor concerns	Internal	2	2	2	Source implies significant but not highest level of analysis.
20. Upper management wanting to know general exposure	Internal	2	2	2	Source implies significant but not highest level of analysis.
21. Upper management request to identify the most critical facilities relative to mapped localized hazards (e.g., landslides)	Internal	1	1	3	Content implies that only systems evaluations are needed at a higher level.

Table 5-3. Sample Inquiries and Suggested Levels of Analysis for Hazards (H), Vulnerability (V), and System (S) Evaluations

Sample Inquiry Content		Source of	Level	of An	alysis	Potential Source and
		Inquiry	H	V	S	Content Factors
22.	Follow-up request to characterize in greater detail the vulnerabilities of critical facilities	Internal	1	2	3	Content implies increased component evaluation level.
	Follow-up request to analyze in detail the vulnerabilities implied by 22	Internal	1	3	3	Content implies significant component evaluation level.
24.	Determining post-hazard service to critical facilities served (e.g., hospitals)	Internal	2	2	3	Level of analysis likely to be consistent with overall scoring.
25.	Upper management wanting a thorough natural hazards management system emphasizing detailed evaluations of hazards	Internal	3	2	3	Source and content set levels of analysis.
26.	Upper management wanting a natural hazards risk management system that allays all concerns about due diligence	Internal	3	3	3	Source and content set levels of effort.
27.	Inquiry by the utility's Board of Directors on a specific hazard concern	Internal	1	1	1	Source limits desired levels of analysis.
	Disaster that causes slightly unexpected damage	Event/ Incident	1	1	1	Content dictates levels of analysis.
29.	Inquiry on specific hazards leading to unexpected damage having significant system impacts	Event	3	2	2	Likely to be consistent with overall scoring.

5.3 Recommended Tasks in Performing Level 1 through Level 3 Analyses

Sections 5.1 and 5.2 provide general guidance for determining the level of analysis appropriate for each element of the performance assessment (hazard, component vulnerability, and system performance). The next step in the assessment process identifies the specific tasks required to perform a Level 1 (simplified), Level 2 (intermediate), or Level 3 (detailed) analysis.

Tables 5-4 through 5-9 summarize the recommended tasks for performing analyses for Levels 1 through 3. Tables 5-4 through 5-6 address natural hazards, and Tables 5-7 through 5-9 address human threats. Each set of tables contains a table for quantifying the hazard (Tables 5-4 and 5-7), a table for assessing component vulnerability (Tables 5-5 and 5-8), and a table for examining

system performance (Tables 5-6 and 5-9). Specific tasks are identified in each row of the tables, and the diamonds indicate inclusion of the task in one or more levels of analysis. Consistent with the terminology introduced previously, the letters refer to a specific element of the assessment (H refers to hazard; V, vulnerability; and S, system performance) and the number after the letter indicates the level of analysis (e.g., H1 refers to Hazard Level 1).

Tasks at each lower level are typically repeated at higher levels. This is intentional because the details of each subsequent analysis level build on the information and data collected in lower levels. The absence of a diamond in a lower level means there are no simpler ways of conducting that task of the analysis.

The tasks that are reflected in each of the tables are key in defining the precise scope of the assessment. As previously noted, they may be equated to the tasks delineated in a Request for Proposal (RFP). Furthermore, the type of inquiry that initiated the planning of the performance assessment serves to define the overall objective of the assessment. The guidance provided in Section 5.4 helps provide a rough indication of the cost and time required to complete the assessment. In total, the information contained in Tables 5-4 through 5-9 and the discussion in the previous sections should be sufficient for developing a work scope for Phase 2.

Background discussion of methods for conducting individual tasks in Tables 5-4 through 5-9 is included for reference in the Commentary.

5.4 Factoring in Cost and Schedule

Cost and schedule considerations also affect the selection of analysis levels for Phase 2. It is important to develop realistic estimates for the level of effort and resources, including technical expertise, required for an adequate assessment. Table 5-10 provides estimates of the range of effort generally required for the different elements of a Phase 2 analysis (hazard, vulnerability, and system performance). The level of effort is measured in terms of the number of days, weeks, or months required by the equivalent of an appropriately qualified full-time employee to perform a specific scope of work. For purposes of establishing Table 5-10, this guideline assumes that the system under investigation is a larger utility with many sites and components. Smaller utilities, with fewer sites and components, or investigations of isolated parts of the system would require more modest resources.

The estimated levels of effort in Table 5-10 are intended to serve as general ranges only. The level of effort required to complete these analyses may vary considerably according to the background and experience of the personnel or specialists assigned to the work tasks. Similarly, the completion schedule can vary according to the total resources that can be devoted to the effort.

As shown in Table 5-3 and discussed in Section 5.2, various combinations of hazard (H), vulnerability (V), and system performance (S) analyses are possible. The accuracy and completeness of Phase 2 analyses can vary according to the selection of the individual levels of analysis (i.e., the selected levels of H, V, and S). Generally, the accuracy and completeness of the analyses improve by increasing the resources and time devoted.

5.5 Dealing with Multiple Hazards

Most electric power systems are exposed to a variety of natural hazards and human threats. This is due in large part to the extended nature of these systems, both geographically and operationally. Therefore, a comprehensive analysis of risks and vulnerabilities will likely involve more than one hazard.

The ideal assessment process is one that integrates the results of multiple hazard studies so that the overall risk to the system is minimized. To do so, however, would require that risks and/or consequences be evaluated based on all contributing hazards with each hazard being evaluated using the same framework (usually probabilistic). Unfortunately, this type of integration, while meaningful, is beyond the current state-of-practice and is not addressed in this guideline.

What is possible, given the tools provided in this guideline, is a relative ranking of analyses for each hazard where several significant hazards and vulnerabilities are identified. For example, the scoring system presented in Section 5.1 can be used to determine an overall score for each hazard considered. These overall scores can then be used to rank the different hazards, eventually leading to a possible prioritization of Phase 2 analyses based on relative risk. This type of process (relative ranking) is quite common in the evaluation of multiple risks. It allows an owner to decide how best to reduce significant risks while maintaining a simple and relatively tractable evaluation framework.

Table 5-4. Hazard Evaluation Matrix for Electric Power Systems – Natural Hazards

	Hazard/Task	Notes	H1	H2	Н3
1.1 Earth	quake Hazard – Surface Fault Rupture				
1.1.1	Review active fault hazard mapping for area, if available		•	•	•
1.1.2	Review topographic maps		•	•	•
1.1.3	Review stereo aerial photographs, if available	1		•	•
1.1.4	Perform field reconnaissance (by qualified geologist)	1		♦	•
1.1.5	Characterize active faults through fault trenching	1			*
1.1.6	Estimate fault displacements using empirical methods	2		♦	*
1.1.7	Determine fault displacements and their likelihood through fault	2			_
	trenching, sampling, age dating, and analysis				•
1.2 Earth	quake Hazard – Liquefaction				
1.2.1	Review literature on regional seismicity	3	♦	•	♦
1.2.2	Perform systemwide probabilistic seismic hazard assessment (PSHA)	2, 4		•	♦
1.2.3	Review topographic maps		♦	•	♦
1.2.4	Review surface geology maps		♦	♦	♦
1.2.5	Review available geotechnical data		•	♦	•
1.2.6	Conduct minimal soil borings, standard or cone penetration tests			♦	
1.2.7	Conduct extensive soil borings, standard and/or cone penetration tests				♦
1.2.8	Perform field reconnaissance (by qualified geotechnical engineers)			♦	♦
1.2.9	Identify potentially liquefiable soil deposits by judgment		♦	♦	•
1.2.10	Identify potentially liquefiable soil deposits by engineering analysis of soils data	2		•	•
1.2.11	Estimate lateral spread displacements using empirical methods	2		•	•
1.2.12	Estimate liquefaction potential using liquefaction susceptibility maps	2		*	•
1.2.13	Perform detailed analysis using analytical tools such as FLAC	2			
	(Fast Lagrangian Analysis of Continua). Estimate likelihood of				♦
	liquefaction and extent of lateral spread displacements				
1.3 Earth	quake Hazard – Strong Ground Shaking				
1.3.1	Review literature on regional seismicity	3	♦	•	•
1.3.2	Review seismic hazard mapping for area, if available	4	•	•	•
1.3.3	Review surface geology maps		♦	•	•
1.3.4	Develop ground motion amplification factors			•	•
1.3.5	Estimate ground motion levels using judgment and existing maps	2	♦	•	•
1.3.6	Estimate ground motion levels using empirical methods	2		•	•
1.3.7	Estimate ground motion levels using analytical methods or tools	2			•

Table 5-4. Hazard Evaluation Matrix for Electric Power Systems – Natural Hazards

	Hazard/Task	Notes	H1	H2	Н3
1.3.8	Perform systemwide PSHA	2, 4			•
1.4 Earth	nquake Hazard – Landslide				
1.4.1	Review surface geology maps		♦	*	♦
1.4.2	Review topographic maps		♦	*	♦
1.4.3	Review stereo aerial photographs, if available			*	♦
1.4.4	Review rainfall maps for area		♦	*	♦
1.4.5	Perform field reconnaissance (by qualified geologists)			*	♦
1.4.6	Review available ground shaking hazard maps for region	2, 4	♦	*	♦
1.4.7	Evaluate landslide potential using expert judgment		♦	*	♦
1.4.8	Evaluate landslide potential using slope stability maps			*	♦
1.4.9	Evaluate landslide potential using statistical or empirical analysis	2		•	•
1.4.10	Evaluate landslide potential using analytical methods	2			•
	nquake Hazard –Tsunami				
1.5.1	Locate facilities within 10 miles of major water bodies		•	•	•
1.5.2	Review topographic maps of coastal areas		♦	•	♦
1.5.3	Review bathymetric maps of near-shore areas			•	•
1.5.4	Review local tide gauge records		♦	•	♦
1.5.5	Estimate potential tsunami flooding using expert judgment	2	♦	•	♦
1.5.6	Estimate potential tsunami flooding using judgment and evaluation of potential tsunami sources	2		*	•
1.5.7	Perform site-specific inundation analysis	2			•
	ınd Deformation Hazard – Landslide (Non-earthquake related)				
2.1.1	Review surface geology maps		•	•	•
2.1.2	Review topographic maps		•	•	•
2.1.3	Review stereo aerial photographs, if available			•	•
2.1.4	Review rainfall maps for area		•	•	•
2.1.5	Perform field reconnaissance (by qualified geologists)			♦	•
2.1.6	Evaluate landslide potential using expert judgment	2	•	♦	•
2.1.7	Evaluate landslide potential using statistical or empirical analysis	2		•	•
2.1.8	Evaluate landslide potential using analytical methods	2			•
	ınd Deformation Hazard – Settlement				
2.2.1	Review surface geology maps		•	♦	•
2.2.2	Review topographic maps		•	•	•
2.2.3	Review groundwater maps and available geotechnical reports		*	•	•

Table 5-4. Hazard Evaluation Matrix for Electric Power Systems – Natural Hazards

	Hazard/Task		H1	H2	Н3
2.2.4	Perform field reconnaissance (by qualified professionals)			*	*
2.2.5	Evaluate settlement potential using expert judgment	2	•	*	*
2.2.6	Evaluate settlement potential using empirical methods	2		*	*
2.2.7	Evaluate settlement potential using advanced analytical methods	2			*
	Determine potential for manmade-induced settlement (e.g.,		A	•	_
	groundwater withdrawal)			•	
2.3 Grou	und Deformation Hazard – Frost Heave				
2.3.1	Review surface geology maps		♦	*	♦
2.3.2	Perform field reconnaissance (by qualified geotechnical engineers)			♦	•
2.3.3	Review existing soil borings, test pits, and ditch logs, as available		♦	*	♦
2.3.4	Conduct limited soil borings			*	♦
2.3.5	Conduct extensive soil borings				♦
2.3.6	Evaluate frost heave potential using expert judgment	2	♦	*	♦
2.3.7	Evaluate frost heave potential using empirical methods	2		*	*
2.3.8	Evaluate frost heave potential using advanced analytical methods	2			*
3 Wind I	Hazard				
3.1	Review national wind maps (ASCE 7-02)		♦	*	♦
3.2	Review literature on local wind history		♦	*	♦
3.3	Identify local conditions that may increase wind hazard	5		*	♦
3.4	Gather historical storm (hurricane) patterns	6		*	*
3.5	Identify potential wind storms using expert judgment		•	*	*
3.6	Conduct field evaluations			*	*
3.7	Estimate potential wind hazards using expert judgment		•	*	*
3.8	Perform systemwide probabilistic wind hazard assessment (PWHA)	2			*
4 Icing F	Hazard				
4.1	Review national icing hazard map ASCE 7-02		•	*	*
4.2	Review literature on local icing history		•	•	•
4.3	Identify local conditions that may increase icing hazard	7		•	*
4.4	Estimate potential icing hazards using expert judgment		•	•	•
4.5	Perform systemwide probabilistic icing hazard assessment				•
5 Floodi	ing Hazard				
5.1	Review Q3 digital flood maps and national Flood Insurance Rate Maps	8	*	•	*
5.3	Gather local flood data from local/regional jurisdiction	9	•	•	•
5.4	Overlay flood maps onto system maps			•	*

Table 5-4. Hazard Evaluation Matrix for Electric Power Systems – Natural Hazards

	Hazard/Task	Notes	H1	H2	НЗ
5.5	Collect topographic, stream, rainfall data			♦	♦
5.6	Identify potential flooding hazard from local dams or floodways		*	*	♦
5.7	Evaluate flooding potential using expert judgment		*	*	♦
5.8	Perform analytical flood hazard analysis (HEC RAS, HAZUS-MH)	2		*	♦

In the three right-hand columns, letters refer to a specific element of the assessment (H refers to hazard; V, vulnerability; and S, system performance) and the number after the letter indicates the level of analysis

- 1 Generally applies to western U.S. faults because they tend to be expressed by geologic features near the surface.
- 2 See Commentary for list of peer-reviewed methods.
- 3 There are numerous sources of information on regional seismicity. Some of these can be viewed on the U.S. Geological Survey (USGS) website (www.usgs.gov).
- 4 Probabilistic seismic hazard maps have been prepared for many areas of the U.S. A good source of publicly available maps for the entire U.S. is the USGS website (http://eqhazmaps.usgs.gov).
- 5 Some of these factors are terrain, location of nearby urban developments, the proximity and density of trees, etc.
- 6 Some of this information is contained on the NOAA website (www.noaa.gov).
- 7 Some of these factors are terrain, elevation, regional moisture patterns, the proximity and density of trees, etc.
- 8 Flood hazard maps are available on the FEMA website (www.fema.gov/fhm).
- 9 Most local jurisdictions have detailed flood maps for their respective areas.

Table 5-5. Component Evaluation Matrix for Electric Power Systems - Natural Hazards

	Component/Task	Notes	V1	V2	V3
1 Fragil	lity Assessment of Electric Power System Equipment				
1.1	Gather information by interviewing utility design engineers, field engineers, and operations managers. Obtain performance assessments (estimates, informed estimates) and any performance data (statistics) that they may be aware of.		•	•	•
1.2	Gather information by performing site survey(s) to assess local conditions and information on the general vulnerability of components.	1		*	•
1.3	Gather information by performing site survey(s) to assess collateral hazards from off-site sources and nearby structures and equipment.	2		•	•
1.4	Gather information by reviewing drawings and calculations for critical equipment items.			•	•
1.5	Gather information by performing site visits to verify installation details for critical equipment items.	3		•	•
1.6	Perform structural calculations to verify the adequacy of observed installation details for critical equipment items or conformance to performance-based specifications.				•
1.7	Assess equipment fragilities using estimates, informed estimates, and experience data from past events (statistics) with minimal field data collection	4	•	•	•
1.8	Assess equipment fragilities using representative field data from Tasks 1.2 through 1.5 and from more detailed data on shipping loads, equipment qualification, and fragility testing.	5		•	•
1.9	Assess equipment fragility using actual field data (as described in Tasks 1.2 through 1.6) and the results of structural analysis of selected equipment.	4			•
2 Fragil	lity Assessment of Critical Buildings				
2.1	Gather information by interviewing utility operations managers and building maintenance personnel.		•	*	•
2.2	Identify critical functions within buildings and the damage that would impair or impede these functions.		•	•	•
2.3	Perform general site survey(s) to assess local conditions and to collect information on the general vulnerability of buildings, their contents, and any nearby equipment and their supports.	1		•	•
2.4	Perform general site survey(s) to assess collateral hazards from off-site sources and nearby structures and equipment.	2		*	•

Table 5-5. Component Evaluation Matrix for Electric Power Systems - Natural Hazards

	Component/Task	Notes	V1	V2	V3
2.5	Assess performance of building and support equipment using judgment (estimates or informed estimates) and/or experience (statistical) data from past events or using empirical damage assessments, with minimal field data collection.	4	*	•	•
2.6	Review architectural and structural drawings, design calculations, foundation evaluation reports, and past structural assessment reports to assess building capacity.			•	•
2.7	Perform independent structural calculations to assess building capacity.	4		•	*
2.8	Develop computer-based structural analysis to assess building response.	4			*

- 1 There are several manuals that identify key steps in conducting a site survey (see the Commentary for references). Users should consider, however, whether equipment items are restrained and, if so, how they are restrained.
- 2 Key items to note are steep slopes, the locations of large tanks or reservoirs, possible chemical spill sources, and large towers or trees (especially on slopes near ingress and/or egress routes).
- 3 It is important to assess whether actual installations are per design (i.e., according to standard procedures).
- 4 See the Commentary for examples.
- 5 It is important to gather information and data from enough sites so that general installation practices can be assessed.

Table 5-6. System Performance Evaluation Matrix for Electric Power Systems – Natural Hazards

Task	Notes	S1	S2	S 3
1 System Performance Assessment				
1.1 Review system maps		*	*	*
1.2 Review system performance in past natural hazards/events		*	*	*
1.3 Develop system model of critical operations			*	*
1.4 Overlay system model onto map of different hazards (GIS function)	1		*	*
1.5 Estimate system performance using expert judgment	2	*	*	*
1.6 Perform systems analysis for limited scenarios (minimum 3)			*	*
1.7 Perform systems analysis for full probabilistic analysis	3			*

- 1 Most utilities are moving towards some type of geographic information system (GIS) to map key system data and information.
- 2 One way of examining performance is to create a set of scenarios that can be reviewed by key operations personnel.
- 3 See the Commentary for examples.

Table 5-7. Hazard Evaluation Matrix for Electric Power Systems – Human Threats

Hazard/Task	Notes	H1	H2	Н3
1.1 Hazard Assessment – Biological, Chemical, Radiological and Blast				
1.1.1 Collect historic data on incidents and near misses		•	*	*
1.1.2 Collect historic data on other companies and industrial systems –	1	<u> </u>	•	_
statistical approach		•	_	•
1.1.3 Review one-call activity reports			•	*
1.1.4 Review third-party activity and incident history reports			•	*
1.1.5 Review federal and state homeland security agency data	2	*	•	*
1.1.6 Consult with internal experts – expert opinion and estimate	3	*	•	*
1.1.7 Consult with local law enforcement agencies – expert opinion			•	*
1.1.8 Consult with other utility companies				*
1.1.9 Create threat scenarios that can be reviewed with operations personnel	4			*
1.2 Hazard Assessment – Cyber				
1.2.1 Collect historic data on other companies and industrial systems	1	*	•	*
1.2.2 Review federal and state homeland security agency data		*	•	*
1.2.3 Consult with internal experts	3	*	•	•
1.2.4 Consult with other utility companies security				•
1.2.5 Consult with information technology companies dealing with cyber				*
security				

- 1 Many of these reports can be obtained from the Federal Energy Regulatory Commission (FERC) or the Department of Homeland Security.
- 2 Some agencies that might provide useful data include: Department of Homeland Security Critical Infrastructure Protection Initiative; Federal Emergency Management Agency; Center for Strategic and International Studies; American Society for Industrial Security, and Rand Corporation.
- 3 These would include Director of Security, Chief Information Officer, etc.
- 4 This may require the help of experts who deal specifically with these kinds of threats.

Table 5-8. Component Evaluation Matrix for Electric Power Systems – Human Threats

Task	Notes	V1	V2	V3
1 Data Collection				
1.1 Collect system operations and maintenance data		*	•	♦
1.2 Collect design, material and construction records for critical systems		*	•	♦
1.3 Collect information on emergency response plans		*	•	♦
1.4 Collect data on right-of-ways and nearby urban development		*	•	♦
Collect data on utility staffing levels, schedules, emergency response capabilities		*	•	*
2 Exposure Assessment				
2.1 Assess local conditions surrounding key systems (e.g., system or facility visibility, location of system relative to businesses and/or public systems, and local terrain conditions)			•	*
2.2 Review hard and soft target security procedures in place		*	•	•
2.3 Review internal and external security coordination			•	•
2.4 Review public safety consequences communication procedures				♦
Review firefighting capabilities at systems, including training and equipment			•	*
2.6 Review federal, state, and local emergency service capabilities and locations		•	•	*
2.7 Review system operating characteristics (e.g., manned/unmanned status, frequency of visual inspections, operator training, and equipment failure reports)			•	•
2.8 Review control room procedures and field coordination			*	•
2.9 Review backup plans for communication and power failures			♦	•
3 Vulnerability Assessment				
3.1 Identify possible motivations for threats (e.g., political, social, religious, ideological, economic, or revenge/retribution)		*	•	•
3.2 Review internal procedures with outside federal, state, and local security agencies – estimate			*	•
3.2 Use expert judgment (internal and/or external) to assess system vulnerabilities – expert opinion		*	•	•
3.3 Use commercial or government software (e.g., Sandia, 2002) to assess system vulnerabilities – simulation and penetration tests	1			•

1 – See the Commentary for examples.

Table 5-9. System Performance Evaluation Matrix for Electric Power Systems – Human Threats

Task	Notes	S 1	S2	S3
1 System Performance Assessment				
1.1 Contact federal, state, and local agencies, industrial organizations, and insurance firms regarding system assessments		•	•	•
1.2 Evaluate the effectiveness of security assessment methods and their mitigative risk control activities			•	*
Evaluate the effectiveness of current management systems and processes in support of security integrity decisions			•	*
1.4 Use expert judgment (internal and outside) to estimate expected system performance		*	•	*
1.5 Perform simulation studies on selected subsystems			•	•
1.6 Conduct penetration tests at critical facilities, such as operations control centers (i.e., red and white cells) – field and table top exercises	1			*

1 – In this type of analysis, a white cell communicates information during a simulation between the utility and the red cell component of the exercise; a red cell performs the reconnaissance and scenario development and exploits particular incidents during an exercise.

Table 5-10. Range of Effort Needed to Perform Hazard, Vulnerability, and System Assessments at Different Levels

				VULNERABILITY ASSESSMENT				
				V1	V2	V3		
		D	H1					
	S1	HAZARD ASSESSMENT	H2					
SYSTEM ASSESSMENT LEVEL			Н3					
MENT L		HAZARD ASSESSMENT	H1					
SESSA	S2		AZAR	AZAR	H2			
EM AS			НЗ					
SYSTI	-	D IN	H1					
	S3	HAZARD ASSESSMENT	H2					
		H ASSI	НЗ					

Level of effort -1 to 15 days of a full-time employee equivalent

Level of effort -3 to 10 weeks of a full-time employee equivalent

Level of effort -3 to 9 months of a full-time employee equivalent

6.0 Examples

The following hypothetical examples illustrate how to use this guideline. These examples are primarily based on external inquiries. They neither apply to an actual power system nor do they represent an actual inquiry. Moreover, these examples are not intended to be representative of any requirements, legislation, or standards that exist at this time.

Example 1: Inquiry by a Regulatory Body – General System Exposure of Distribution Lines to Wind Hazard

Inquiry: A local government council in Harris County, Texas (which includes the City of Houston), queries whether it should pass an ordinance that requires tree trimming and the spacing of trees away from electric power distribution and transmission lines. If enacted, this ordinance would go beyond the powers of the electric power utility system, which does not have jurisdiction over such tree trimming and spacing of trees. The council makes this query to the local electric power utility, which has about 40,000 customers. The goal of such an ordinance would be to reduce the number of outages during natural hazards, such as severe storms.

Assessment: The utility response to this inquiry is based on understanding the risk associated with wind-caused falling trees and wind-borne branches and other debris, and the impact that this type of incident has on the performance of transmission and distribution components, primarily overhead lines. In order to respond to the local government council, the utility must 1) determine the vulnerability of power lines to wind hazards, 2) assess the likelihood of significant wind hazards in the region, and 3) evaluate what the likely impacts will be in the region should power lines be damaged by trees in windstorms.

- **Step 1:** Determine whether this region is susceptible to severe wind hazards (Phase 1 assessment). Because this service region is located along the Gulf Coast where hurricanes are a significant hazard, the designated hazard level (as determined from Figure 8-3 and Appendix A in the Commentary) is determined to be "High."
- **Step 2:** Determine general vulnerability to damage or disruption (Phase 1). The vulnerability matrix in Table 4-2 indicates that distribution lines have a High vulnerability to severe winds. Because both the hazard and vulnerability level are high, the user is prompted to proceed to a Phase 2 assessment.
- **Step 3:** Determine the hazard rating and score. Based on the information above, it is determined that wind severity in the county is High. The hazard score per Section 5.1 for a High rating is 3.
- **Step 4:** Determine the vulnerability rating and score. Table 4-2 indicates distribution lines have a High vulnerability to severe winds. The vulnerability score per Section 5.1 for a High rating is 3.
- **Step 5:** Determine the consequence rating and score. Using Table 5-1, the System Type modifier is taken as 1 because there generally is redundancy in the system at this level.

From Table 5-1, the consequence of failure of distribution lines can be characterized as:

- Life safety: low, $C_{LS} = 1$
- Financial loss: low, $C_{FL} = R_C = 1$
- Service disruption: low, $C_{SD} = R_C = 1$
- Environmental impact: low, $C_{EI} = 1$

The maximum consequence rating for use in Equation 5-1 is 1.

Step 6: Determine the overall rating. Using Equation 5-1 with the hazard, vulnerability, and consequence scores from Steps 3 through 5, the level index is computed to be:

$$I_L = H \times V \times Max (C_{LS}, C_{FL}, C_{SD}, C_{EI}) = 3 \times 3 \times 1 = 9$$

For a level index (I_L) of 9, Table 5-2 recommends a Low baseline level for Phase 2 analysis, which means an H1-V1-S1 analysis.

- **Step 7:** Perform Level 1 Hazard (H1) Analysis. Referring to Table 5-4, an H1 analysis consists of Tasks 3.1, 3.2, 3.5, and 3.7 (review national wind maps, review literature on local wind history, identify potential windstorms using expert judgment, and estimate potential wind hazards using expert judgment).
- **Step 8:** Perform Level 1 Vulnerability (V1) Analysis. The results of scoring in Step 6 indicate a Level 1 vulnerability analysis. A Level 1 vulnerability analysis consists only of Tasks 1.1 and 1.7 in Table 5-5; that is, gathering information by interviewing utility design engineers, field engineers, and operations managers and assessing power line fragilities using estimates, informed estimates, and experience data from past events, respectively.
- **Step 9:** *Perform Level 1 Systems (S1) Analysis.* For a Level 1 systems analysis, Table 5-6 recommends Tasks 1.1, 1.2, and 1.5, which include a review of system maps to determine distribution lines at risk to wind-related damage, review of system performance in past (similar) events, and an estimate of system performance in severe winds using expert judgment.

If the risk of distribution line failure and associated consequences as determined by the performance assessment is judged unacceptable, further assessment using higher levels in one or more of the analysis elements may be necessary. A more quantitative and reliable result would be expected for higher analysis levels.

Results: Depending on the outcome of the analysis, the utility will be able to demonstrate that the likelihood of power line damage from falling trees is minimal or, if the likelihood of damage is higher, what corrective actions could be taken to mitigate future system performance consequences from this type of damage.

Example 2: Inquiry by a Public Official – Consequence of a Local Hazard at a High-Voltage Substation

Inquiry: A state official has reviewed electric power system maps and determined that a specific high-voltage substation appears to be critical to overall power system operations in the state. He queries the electric power utility on the system performance consequences of failure of this substation should it be damaged by a newly discovered fault in southern California.

Assessment: The electric power utility will base its response on three factors: 1) the credibility of the analysis that identifies the presence of the new fault, 2) the present vulnerability of this high-voltage substation to earthquake hazards, and 3) the overall impacts on the system performance should this substation be damaged and/or disrupted.

- **Step 1:** Determine general vulnerability to damage or disruption (Phase 1 assessment). The vulnerability matrix in Table 4-2 indicates that high-voltage substations have a High vulnerability to earthquake hazards. Because all of southern California is considered a high seismic hazard area, the user is prompted to proceed to a Phase 2 analysis.
- **Step 2:** *Determine the hazard rating and score.* From Figure 8-1, the seismic hazard of southern California is determined to be High. Furthermore, the inquiry itself indicates a newly discovered seismic source, and the seismic hazard map of Figure 8-1 simply confirms the seismic hazard. The hazard score per Section 5.1 for a High rating is 3.
- **Step 3:** *Determine the vulnerability rating and score.* Table 4-2 indicates that the vulnerability of a transmission substation to earthquake shaking is High. The vulnerability score per Section 5.1 for a High rating is 3.
- **Step 4** Determine the consequence rating and score. Using Table 5-1, the system-type modifier is taken as 1 because, although this particular facility is one of several major facilities that service the southern California area, damage at this site could result in systemwide disruptions affecting a large portion of the state. From Table 5-1, the consequence of failure of a major transmission substation can be characterized as:
 - Life safety: low, $C_{LS} = 1$
 - Financial loss: moderate, $C_{FL} = 2 R_C = 2 \times 1.0 = 2$
 - Service disruption: high, $C_{SD} = 3 R_C = 3 \times 1.0 = 3$
 - Environmental impact: low, $C_{EI} = 1$

The maximum consequence rating for use in Equation 5-1 is 3.

Step 5 *Determine the overall rating.* Using Equation 5-1 with the hazard, vulnerability, and consequence scores from Steps 2 through 4, the level index is computed to be:

$$I_L = H \times V \times Max (C_{LS}, C_{FL}, C_{SD}, C_{EI}) = 3 \times 3 \times 3 = 27$$

For a level index (I_L) of 27, Table 5-2 recommends a Moderate baseline level for Phase 2 analysis, which implies an H2-V2-S2 analysis. However, because the inquiry

must be answered in the next two weeks, the analysis levels are adjusted downward to H1-V2-S1. The level of analysis for component vulnerability remains Level 2 because the focus of the inquiry is on the performance of a specific substation.

- **Step 6:** *Perform Level 1 Hazard (H1) Analysis.* Referring to Table 5-4, an H1 analysis for ground-shaking effects (i.e., no known ground failure conditions exist at the site) consists of Tasks 1.3.1 through 1.3.3 and Task 1.3.5 of Table 5-4 (review of regional seismicity, seismic hazard mapping, surface geology maps, and estimates of ground motion levels using judgment and existing maps).
- **Step 7:** Perform Level 2 Vulnerability (V2) Analysis. Per Table 5-5, a Level 2 vulnerability analysis for electric power equipment consists of Tasks 1.1 through 1.5 (gather information from interviews and site surveys on local conditions to assess possible collateral hazards; review drawings and calculations for key equipment at substation site) and Tasks 1.7 and 1.8 (assess equipment fragilities using expert judgment; and assess equipment fragilities using detailed data on shipping loads, equipment qualification and fragility testing).
- **Step 8:** Perform Level 1 System (S1) Analysis. For a Level 1 systems analysis, Table 5-6 recommends Tasks 1.1, 1.2, and 1.5 (review system maps, review system performance in past events, and evaluate system performance using expert judgment).
- **Results:** Depending on the outcome, the utility will be able to 1) document that the information collected on the newly discovered fault is insufficient to warrant a more detailed analysis of the substation, 2) demonstrate that current design and construction measures are sufficient to resist damaging ground motions from the newly discovered fault, 3) indicate that more detailed information or analysis (e.g., Level 3) is required before responding to the inquiry, or 4) indicate what actions will be taken to mitigate damage from the new earthquake threat.

Example 3: Inquiry by a Regulatory Body – Detailed Evaluation of a Hazard Relative to an Extremely Critical Facility

Inquiry: An electric power utility has been requested by the Public Utilities Commission to assess the risk of chemical/biological attack on its operations control center (OCC).

Assessment: The utility will base its response on how vulnerable it is to the identified threats and what actions are currently being taken to reduce the potential for such an event to occur.

- **Step 1:** Determine the overall rating. As stated Section 4, because human threat events appear to be ever present, the evaluation proceeds directly to a Phase 2 analysis.
- **Step 2:** Determine the hazard rating and score. Because the current threat level is yellow or elevated, the hazard level is, according to Table 4-1, assigned a Moderate index. The hazard score per Section 5.1 for a Moderate rating is 2.

- **Step 3:** Determine the vulnerability rating and score. Table 4-2 indicates that the vulnerability of an operations control center to physical attack is High. The vulnerability score per Section 5.1 for a High rating is 3.
- **Step 4** Determine the consequence rating and score. Using Table 5-1, the system-type modifier is taken as 1.0, because an OCC will have at least rudimentary backup if their main center goes off line. From Table 5-1, the consequence of failure or loss of the OCC can be characterized as:
 - Life safety: low, $C_{LS} = 1$
 - Financial loss: moderate, $C_{FL} = 2 R_C = 2 \times 1.0 = 2$
 - Service disruption: moderate, $C_{SD} = 2 R_C = 2 \times 1.0 = 2$
 - Environmental impact: low, $C_{EI} = 1$

The maximum consequence rating for use in Equation 5-1 is 2.

Step 5 Determine the overall rating. Using Equation 5-1 with the hazard, vulnerability, and consequence scores from Steps 2 through 4, the level index is computed to be:

$$I_L = H \times V \times Max (C_{LS}, C_{FL}, C_{SD}, C_{EI}) = 2 \times 3 \times 2 = 12$$

For a level index (I_L) of 12, Table 5-2 recommends a Low baseline level for Phase 2 analysis, which implies an S1-H1-V1 analysis.

- **Step 6:** *Perform Level 1 Hazard (H1) Analysis.* Referring to Table 5-4, a Level 1 analysis for physical attack consists of Tasks 1.1.1, 1.1.2, 1.1.5, and 1.1.6 (collect data on past incidents and near misses, collect historic data on other companies and industrial systems, review federal and state homeland security agency data, and consult with internal experts).
- **Step 7:** Perform Level 1 Vulnerability (V1) Analysis. Per Table 5-5, a Level 1 vulnerability analysis for physical attack consists of various steps under Tasks 1 through 3 (data collection, exposure assessment, and vulnerability assessment).
- **Step 8:** Perform Level 1 System (S1) Analysis. For a Level 1 system analysis, Table 5-6 recommends Tasks 1.1 and 1.4 (contact federal, state, and local agencies and use expert judgment to estimate system performance.)

Results: Depending on the outcome of the analysis, the utility will be able to demonstrate that 1) it has thoroughly assessed the likelihood of anticipated threats, 2) it has taken or will take significant measures to prevent or mitigate the impacts of the event should the event occur, or 3) further assessment is necessary to fully quantify the magnitude of the threat and its impact on the performance of the system.

7.0 References

American Society of Civil Engineers (ASCE). 2003. Minimum Design Loads for Buildings and Other Structures (ASCE-7-02 Standard). Reston, Virginia: American Society of Civil Engineers.

Applied Technology Council (ATC). 2002. Rapid Visual Screening of Buildings for Potential Seismic Hazards—A Handbook, 2nd ed. Redwood City, California: Applied Technology Council.

Electricity Consumers Resource Council. 2004. The economic aspects of the August 2003 blackout. Washington, D.C.: The Electricity Consumers Resource Council. (See also http://www.elcon.org/).

Federal Emergency Management Agency (FEMA). 1996. *Q3 Flood Data User's Guide*. Washington, D.C.: Federal Emergency Management Agency. (See also http://msc.fema.gov/q3users.shtml.).

_______. 2002. *Rapid Visual Screening of Buildings for Potential Seismic Hazards—A Handbook*, 2nd ed. Washington, D.C.: Federal Emergency Management Agency, FEMA 154.

_______. 2003. *Q3 Data for the U.S.* Washington, D.C.: Federal Emergency Management Agency.

International Code Council (ICC). 2002. *International Building Code* 2003.

Multidisciplinary Center for Earthquake Engineering Research (MCEER). 1998. Engineering and Socioeconomic Impacts of Earthquakes: An Analysis of Electricity Lifeline Disruption in the New Madrid Area. Monograph 2, ed. M. Shinozuka, A. Rose, and R.T. Eguchi. Buffalo, New York: MCEER.

National Fire Protection Association (NFPA). 2003. *Building Construction and Safety Code* (NFPA 5000). Quincy, Massachusetts: NFPA.

National Oceanographic and Atmospheric Administration (NOAA). 1999. *Tornado Data Archive*. Silver Spring, Maryland: NOAA.

North American Electric Reliability Council (NERC). 2002a. Threat Alert System and Physical Response Guidelines for the Electricity Sector, version 2.0. October 8, 2002.

______. 2002b. Threat Alert System and Cyber Response Guidelines for the Electricity Sector, version 2.0. October 8, 2002.

Sandia National Laboratory. 2002. "Risk Assessment Methodology for Transmission (RAM-T)." January.

U.S. Geological Survey (USGS). 1997a. National Landslide Map for the Conterminous United States (Open-File Report 97-289). Reston, Virginia: USGS.

_____. 1997b. National Seismic Hazard Maps (Open-File Report 97-131). Reston, Virginia: USGS.

8.0 Hazard Maps

Hazard maps for earthquake, landslide, hurricane wind and tornado, tornado only, riverine and coastal flooding, and ice load are presented on the following pages. With the exception of flooding, these maps contain designations for low, moderate and high hazard levels. For a definition of these levels, see Table 4-1. In addition, hazard designations may be obtained from Appendix A of the Commentary.

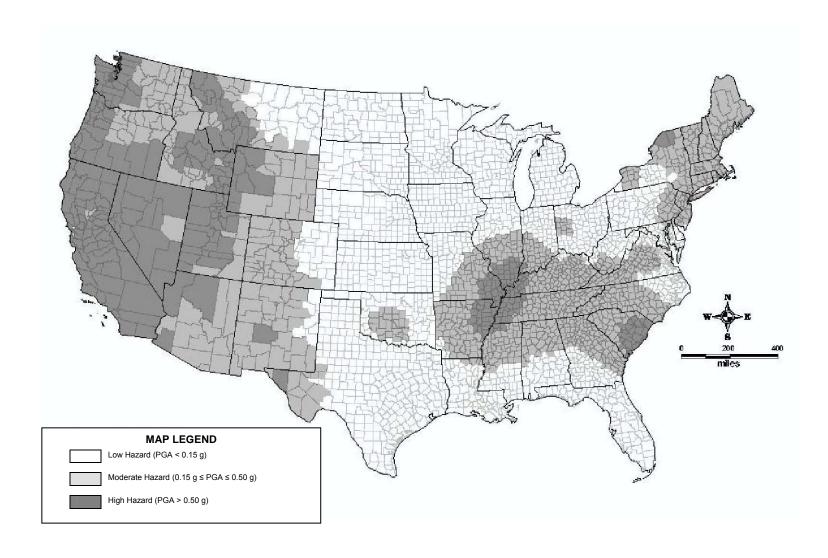


Figure 8-1. Hazard Level Map for Earthquake (Source: FEMA Figure 8-1. Hazard Level Map for Earthquake (Source: FEMA 2002)

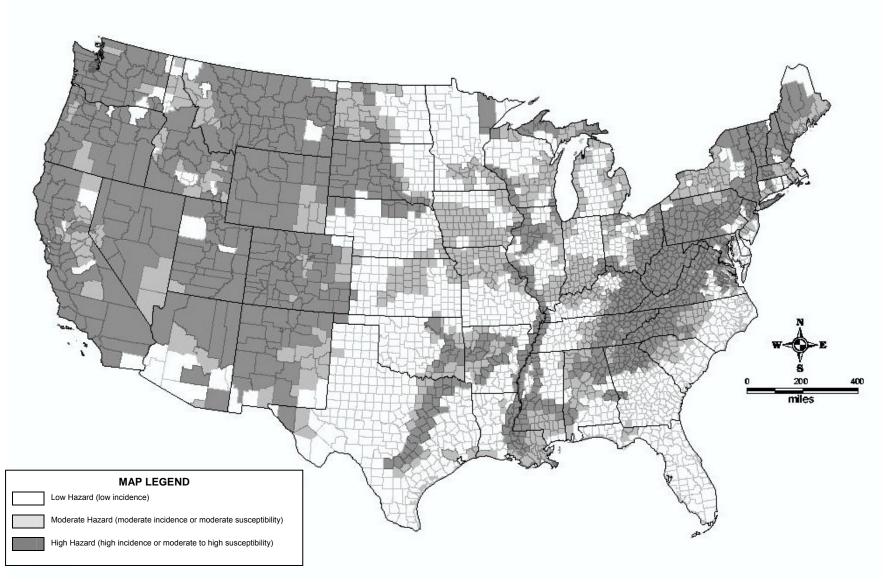


Figure 8-2. Hazard Level Map for Landslide (Source: USGS 1997a)

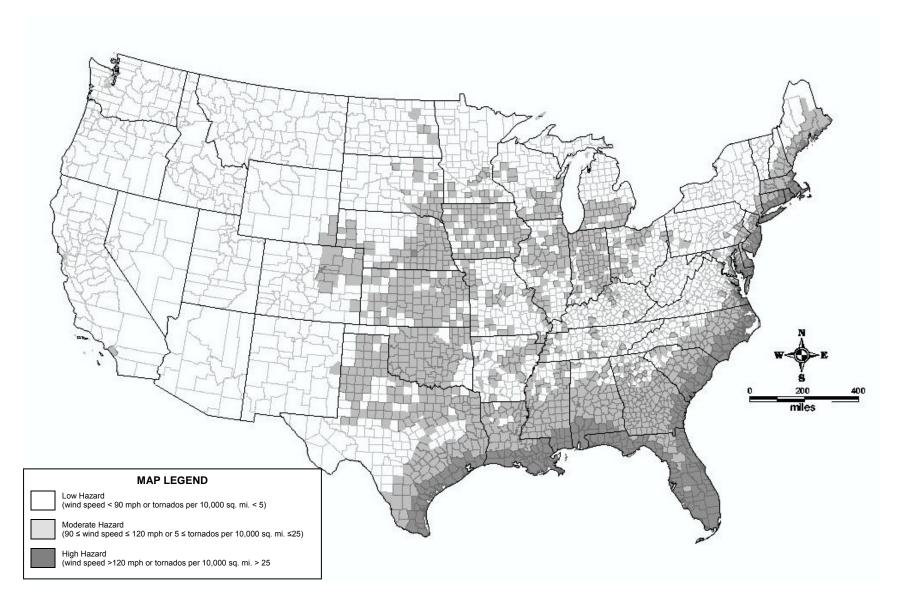


Figure 8-3. Hazard Level Map for Severe Wind, Hurricane Wind and Tornado (Sources: ASCE 2002, ICC 2002, NOAA 1999)

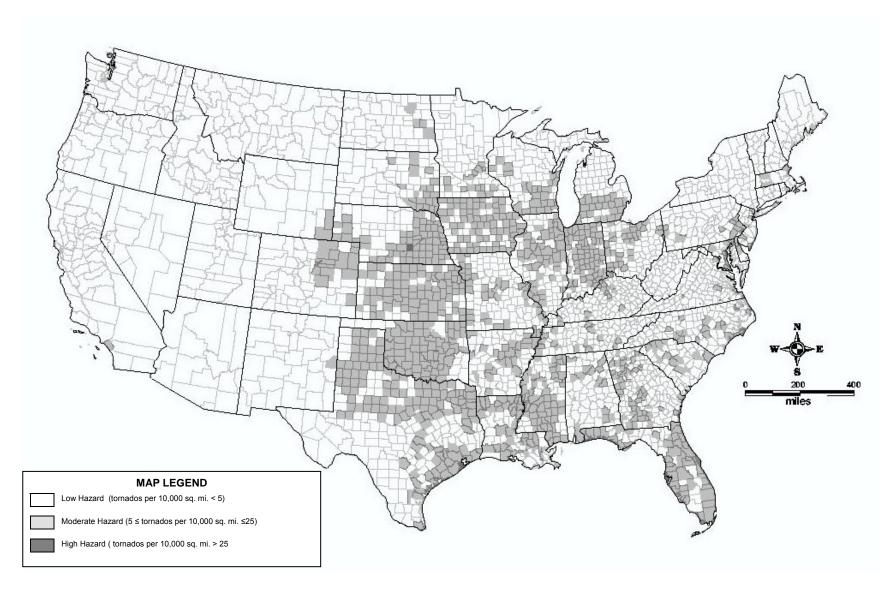


Figure 8-4. Hazard Level Map for Tornado Only (Source: NOAA 1999)

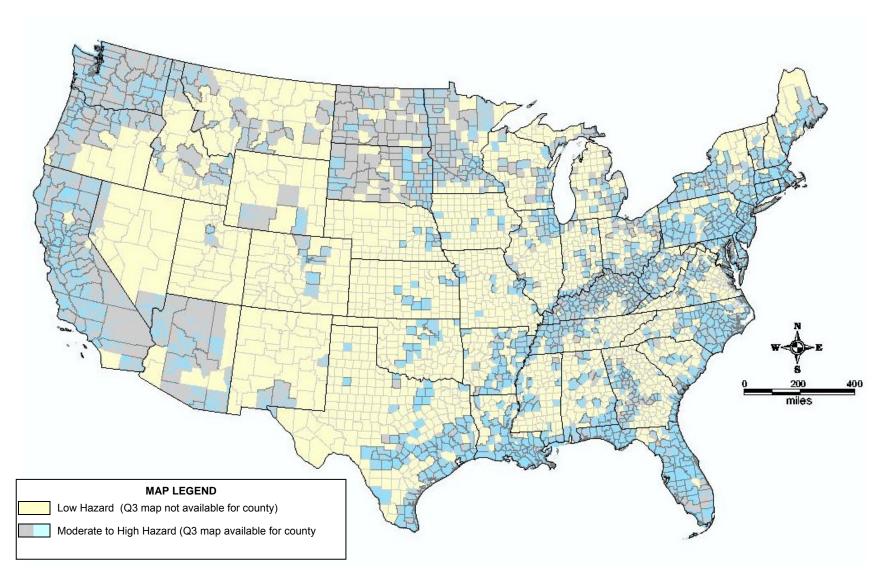


Figure 8-5. Hazard Level Map for Riverine and Coastal Flooding (Source: FEMA 2003)

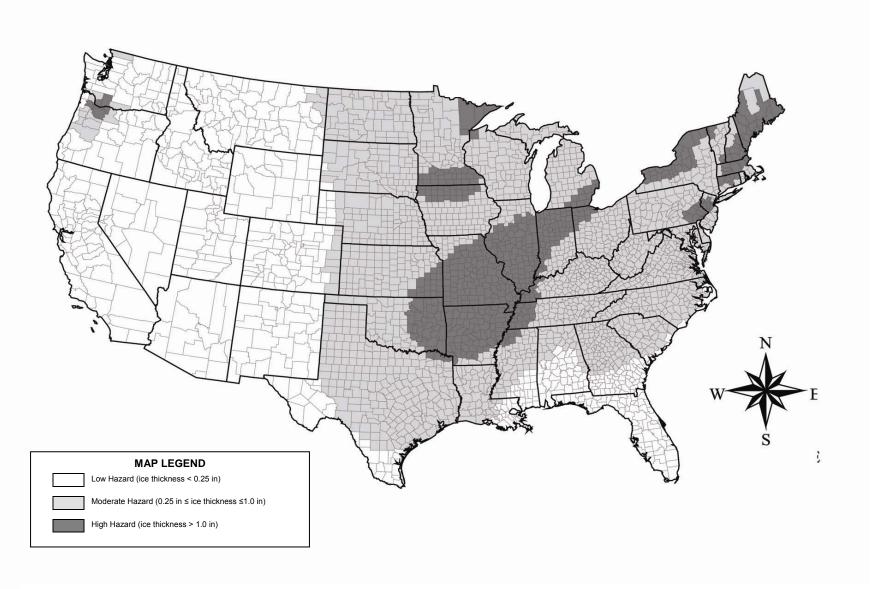


Figure 8-6. Hazard Level Map for Ice Load (Source: ASCE Standard 7 – 2005, ALA Report on Extreme Ice Thicknesses from Freezing Rain 2004)