
AmericanLifelinesAlliance
A public-private partnership to reduce risk to utility and transportation systems from natural hazards and
manmade threats

U.S. Geological Survey’s ShakeMap and
ShakeCast:

Improving Utilization within the
American Lifelines Alliance (ALA)
Community

September 30, 2004

September 30, 2004

 AmericanLifelinesAlliance
A public-private partnership to reduce risk to utility and transportation systems from natural hazards and
manmade threats

U.S. Geological Survey’s ShakeMap &
ShakeCast:

Improving Utilization within the
American Lifelines Alliance (ALA)
Community

September, 2004

www.americanlifelinesalliance.org

This report was written under contract to the American Lifelines
Alliance, a public-private partnership between the Federal Emergency
Management Agency (FEMA) and the National Institute of Building
Sciences (NIBS). This report was reviewed by a team representing
practicing engineers, academics and federal scientists

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page i

Acknowledgements

The following people (with their affiliations) contributed to this report.

David Wald, Principle Investigator U.S. Geological Survey, Golden, CO

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page i

Table of Contents

1.0 Introduction………………………………………………………………….. 1
1.1 Background………………………………………………………….. 1
1.2 Project Objective and Scope………………………………………. 2

2.0 Project Results……………………………………………………….……… 5
2.1 ShakeCast Development…………………………………………… 5
2.2 Lessons Learned from User Interfacing—Doc. and Support…….5
2.3 Development of Initial Default Facility and Fragility Databases….8
2.4 ShakeCast Promotion…………………………………………..…… 9

References…………………….…………………………………………….……… 15

Appendix: Supplementary Documents…………………………………...……… 16
A.1 ShakeCast Information Sheet…………………………………….. 16
A.2 Disaster Resistant Calif. Conf. Proceedings, 2004………...…….21
A.3 Abstract for National Earthquake Conf., Sept., 2004…………….31
A.4 ShakeCast System Specification…………[Stand Alone, 99 Pages]
A.5 ShakeCast Database Specification………[Stand Alone, 39 Pages]

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page ii

List of Figures

Figure 2.1 ShakeCast Web Home Page……………………………………………….. 11
Figure 2.2 ShakeCast Web Page (Downloads)……………………………………….. 12
Figure 2.3 ShakeCast Web Page (Documentation)…………………………….…….. 13
Figure 2.2 ShakeCast Web Page (What’s New)………..…………………………….. 14

USGS ShakeMap/ShakeCast Final Report

September, 2004 Page 1

1.0 Introduction

The Federal Emergency Management Agency (FEMA) formed in 1998 the American Lifelines
Alliance (ALA) as a public-private partnership. In 2002, FEMA contracted with NIBS through
its Multihazard Mitigation Council (MMC) to, among other things, assist FEMA in continuing
ALA earlier guideline development efforts. In 2004, ALA requested the U.S. Geological Survey
to further develop and promote ShakeCast. ShakeCast, short for ShakeMap Broadcast, is a fully-
automated system for delivering specific ShakeMap products to critical users and triggering
established post-earthquake response protocols.

1.1 Background

ShakeMap is a tool used to portray the extent of potentially damaging shaking following an
earthquake. It can be found on the Internet at http://earthquake.usgs.gov/shakemap and is
automatically generated for both small and large earthquakes in areas where it is available. It can
be used for emergency response, loss estimation, and public information.

Despite the popularity and acclaim of ShakeMap for emergency response and post-earthquake
information, there is a lack of recognition of the full potential of ShakeMap. That is, critical
users need to move beyond simply “looking at ShakeMap,” and begin implementing response
protocols that utilize the known shaking distribution in fully automated systems in order to more
fully realize this potential to prioritize and greatly aid response efforts. To this end the USGS has
begun the development of ShakeCast.

ShakeCast is a fully-automated system for delivering specific ShakeMap products to critical
users and triggering established post-earthquake response protocols. ShakeCast allows utilities,
transportation agencies, and other large organizations to automatically determine the shaking
values at their facilities, set thresholds for notification of damage states (typically green, yellow,
red) for each facility and then automatically notify (via pager, cell phone, email) specified
operators, inspectors, etc., within their organizations who are responsible for those particular
facilities so they can prioritize their responses.

For example, the California Department of Transportation (Caltrans) is testing the prototype
ShakeCast system right now. Caltrans has over 25,000 bridges and overpasses under their
responsibility in California; having an instantaneous snapshot of the likely damage to each will
allow them to prioritize rerouting traffic, closures, and inspections following a damaging
earthquake. They are pretty excited about this technology, and many critical users who have
heard about it are excited to get it soon. However, we are limited in the resources we can devote
to the development of ShakeCast, slowing progress, and the groundwork for establishing
relationships with many other potential users is beyond our current effort and capacity. While
some lifeline organizations could use these systems directly, others need further assistance as is
outlined bellow.

In addition to real-time notification, an additional major benefit of the ShakeMap/ShakeCast
combination is its built-in capacity to generate and deliver Scenario Earthquakes for evaluating
system performance and response capabilities under a variety of earthquake conditions.
ShakeMap is now used routinely to generate earthquake scenarios for many users; ShakeCast

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 2

will further allow these system tests to be performed with the same notification tools that will be
in place and available for a responding to a real earthquake.

As an important side note, the delivery of critical post-earthquake information is a difficult
problem and is serious business. In the ShakeCast development, reliable and redundant
transmission, security and authentication, and documentation and version control of product
delivery have all been considered from the onset. However, is quite clear that ongoing IT
security concerns and changes within organizations will present ongoing development hurdles.
These will be addressed as necessary through direct user interfacing in our prototype
installations. We expect the solutions we develop through these initial installations to be robust
and therefore can be used for wider distribution of ShakeCast to other users. These tools will
also be beneficial for other rapid post-disaster notification and alerting systems.

1.2 Project Objective and Scope

The ShakeMap developers have long recognized the lifeline organizations as one primary class
of users that could directly benefit the most from having rapid information in the aftermath of a
significant earthquake. Through long-term interactions in southern California, many lifeline
organizations and companies have had the necessary interaction to further the use of ShakeMap
in post-earthquake response. However, a more central, nationwide distribution of information
about ShakeMap/ShakeCast was deemed necessary to reach the wide array of potential users.
We believe that many of the ALA partners and the intended users of ALA products will find
these systems highly beneficial if they were fully informed of the potential applications. In this
sense ALA via this ShakeCast funding will facilitate providing guidelines and the information
necessary to reach this wider audience.

A second critical role that ALA is playing is in facilitating the development of fragility
relationships necessary to utilize shaking information in real-time. That is, each utility and
transportation organization has an array of facility and component types with varying degrees of
knowledge of their individual vulnerability, and highly variable levels of in-house expertise
needed to establish and properly use fragility relationships to assign likely damage states in real
time. A systematic approach to this development, and formal guidelines on the use of such
facility/fragility assignments would be more cost-effective than relying on individual
organizations to develop their own strategies (a task many have not or may not otherwise take
on). ShakeMap thus is a specific analysis tool for using standardized procedures for evaluating
lifeline earthquake damage and functionality, and will provide added value to ALA products and
the ALA mission.

Based on these objectives, the project scope consisted of the following tasks. Funding was used
for contract software developers working under USGS direction. All efforts were guided and
supplemented by USGS staff.

1) Expedite development of the second and final phase of ShakeCast that will result in a
well-documented, self-installing software package for use by utility and transportation
systems and others.

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 3

2) Develop lessons learned from interfacing with at least 3 major users (possibly among
WashDOT, Bureau of Reclamation, California DWR, Seattle City Light, others) that
have different ShakeMap/ShakeCast applications than Caltrans and PG&E (including
automated post-processing for loss-estimation), and integrate resulting lessons learned
into initial user ShakeMap/ShakeCast guidelines by which current and future fragility
analyses can take advantage of the rapid post-earthquake information provided by
ShakeMap and ShakeCast considering the specific parametric values ShakeMap
produces, mainly peak ground motion and spectral accelerations.

3) Initial development of default ShakeMap-specific facility fragility, damage, and
notification tables based on the prototype user’s system assignments. In consultation
with NIBS and ALA, begin collection and assignment of additional default fragility,
damage, and notification levels for other users according to established guidelines (ALA
Lifeline Guidelines, HAZUS, ATC, etc.). Consistent with currently available ShakeMap
parameters, these fragility assignments will be limited to dynamic (that is, seismic wave
propagation-related) and not permanent ground deformation-related losses. Ongoing and
additional studies will provide additional fragility values suitable for post-earthquake
response and will continue expansion of a fragility matrix from which other users can
select appropriate values.

4) Promote ShakeCast within the lifelines arena by producing a USGS Fact Sheet, an ATC
Tech Brief, and/or other joint outreach recommendations through consultation and
collaboration between NIBS, ALA and Contractor.

In addition to current USGS funding for ShakeCast at the level of $100,000, USGS provided no
cost support for this project in the form of salary support for D. Wald and B. Worden for
ShakeMap development and ShakeCast oversight and continued user interaction and assistance.
Also, no-cost efforts have been provided by prototype users at Caltrans (mainly Loren Turner)
and at PG&E (Marcia Mclaren and others).

The following deliverables have been provided under this contract:

1. A well-documented, self-installing software package by expediting development of the
first release of the ShakeCast system.

2. Initial user guidelines that are the result of lessons learned from interfacing with at least
3 major users.

3. Default ShakeMap-specific facility fragility, damage, and notification tables based on the
prototype user’s system assignments.

4. USGS Fact Sheet, an ATC Tech Brief, and/or other joint outreach recommendations.

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 4

Early on in the project cycle, the following timeline was established, and monthly progress
reports were provide to ALA.

2004 ALA ShakeCast Project - Time Line

Tasks March April May June July Aug. Sept

1) ShakeCast (SC) Development
 Design & Implement Phase II SC System
 Implement Basic Istaller (Windows & UNIX)
 Notification & Messaging
 Templates
 Aggregation within message type
 Format for Summary Messages
 User Configuration
 System Sign-Up
 Database Interface
 User Documentation (Install, Admin, User)
 Server Installation upstream Signup System
 Address missing features, attributes

2) User Support and Interfacing

SC Install at Two Critical Lifeline Users
SC Install at Two Additional Lifeline Users

3) Develop Initial Default Facility Fragility
 Literature/Expert search for existing guidelines
 Assign Fragilities based on ShakeMap Parameters
 Implement Assignment as Default Option in SC

4) ShakeCast Promotion
 ALA/USGS Discussion on Promotion Ideas
 Design USGS Fact Sheet or Info Sheet
 Design ATC Tech Brief (with S. King)

USGS ShakeMap/ShakeCast Final Report

June 2004 Gatekeeper Systems 5

2.0 Project Results

2.1 ShakeCast Development

A well documented, self-installing ShakeCast software package was developed. This package is
now available to users (at no charge) via download at the official ShakeCast web page
(http://www.shakecast.org/). This site has complete ShakeCast documentation, install scripts
(Windows and Unix), user scripts for database loading, and an installation guide.

The home page for ShakeCast is shown in Figure 2.1. ShakeCast System software can be
download from the “Download” page (Figure 2.2.) for either UNIX systems or Windows
systems. UNIX has been developed for FreeBSD UNIX, but one of the users (PG&E) was able
to operate the system easily on Sun’s Solaris UNIX. The Windows version is operational in
Windows 2000 and XP.

2.2 Lessons Learned from User Interfacing—Documentation and Support

A number of iterations between the development team and two users, Caltrans and PG&E, led to
substantial changes in ShakeCast’s software and documentation. Early-on discussions pointed to
the need for both cell/pager summary notifications and complete summary information via email.
It also became clear that we needed to “aggregate” notifications to avoid numerous notifications
if individual facilities exceed a predefined notification threshold. This was accomplished by
combining multiple notifications into one message for delivery.

The outcome was a system that sorts through a user’s facilities, summarizes the likely impact on
each facility, and sends a brief summary (short message) to a text pager/Cell service and the
complete summary (list of facilities) via email. Further discussions led to 1) additional sorting
capabilities on the summary information and 2) a common-separated value (CSV) email
attachment that can be imported directly into Excel for further sorting or analysis.

Users also requested simplification in the interface to all databases, resulting in a scripted facility
import tool (see below), additional functionality for added notifications, including allowing
“groups” for similar facility and notification classes that could be easily grouped for simplifying
notifications. A number of simplifications were also made to the ShakeCast Server Configuration
approach as well as the user documentation.

Most important, the users installed the system based on the installation instructions. Numerous
cases of unclear or confusing wording were remedied and additional suggestions for clarifying
particular options were provided, resulting in a more intuitive installation and user guidelines.

User Documentation

Initial user guidelines were produced, put online, and provided with the initial ShakeCast
software download. These initial user guidelines were then iteratively modified based on our test

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 6

users’ experience with installation, internet security access issues, and setting up facility,
fragility, and notification databases.

The ShakeCast System Specification is available online in the Documentation section of the
ShakeCast web page and is included in Appendix A.4 of this report. Figure 2.3 shows the main
Documentation portion of the ShakeCast web pages. Important sections included in the online
documentation are outline below. However, as is customary, the documentation is meant to be
interactive and interlinked, and thus is it not included in its entirety.

Installation
UNIX

 Initial Installation
Upgrading

 Windows

Configuration
 Configuring the ShakeCast Server
 Facility Importing: facimport
 The Configuration File
 Aggregation of Notifications

 Notification Templates

Another feature of the ShakeCast web site is the “What’s New” section (see Figure 2.4), which
provides a development timeline, version control, and specifications for each new release of the
ShakeCast software.

In addition to the extensive User Documentation online, a separate section of the documentation
exists called “Internal Documentation”. This section is provided for those interested in
developing add-on capabilities and features for ShakeCast, as is anticipated in the open-source
environment. Several users have indicated the desire for additional functionality and it is
anticipated that such efforts will be contributed back to the ShakeCast software for redistribution
to other potential users. For example, Caltrans has proposed to add a more interactive Graphical
User Interface (GUI) for interacting with the user databases, including notifications with internal
funding.

User Support and Interfacing

The following ShakeCast users were engaged during this project. Below we describe the nature
of their use, feedback and plans to use ShakeCast.

Pacific Gas & Electric (PG&E). Contact: Marcia McLaren

Initially, PG&E was interested in ShakeCast for the Electric group, using primarily the download
and script start-up option to get ShakeMap reliably into their Map Server internal response
system. Subsequently, the Gas (Pipelines) group has also installed ShakeCast to help address
their pipelines Integrity Management System as required by US Department of Transportation.
The Gas group is utilizing the full functionality of ShakeCast, getting notifications for each

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 7

pipeline in their inventory. Also, Stuart Nishenko has been expanding the scope of this effort at
PG&E to include the PEER Lifelines Program in an effort to develop guidelines for Lifeline
Utility and Transportation using ShakeMap and ShakeCast. They anticipate California Energy
Commission funding. The use of ShakeCast will be expanded to PG&E’s Nuclear, Hydro
generation, and building and Land, Emergency Operation Centers.

PG&E’s Gas Pipeline group installed the UNIX version under a new platform (SUN Solaris) for
the first time, with little difficulty, and their feedback on this installation was incorporated in to
the user documentation. PG&E also installed dual hardware systems external to their firewall
system, communicating with two systems internally, which required additional documentation in
the users’ guide.

California Department of Transportation (Caltrans). Contact: Loren Turner

Caltrans is responsible for over 25,000 bridges and overpasses in California. The bridge
engineering group is using ShakeCast for rapid evaluation of shaking at each, as facilities and
fragilities are loaded in their ShakeCast database. The success of the use of this system is
allowing Caltrans to expand their internal usage to other critical parts of the organization,
including Traffic Management and Bridge inspection. Significant and useful suggestions were
provided by Loren Turner (Senior Transportation Engineer) concerning several aspects of the
ShakeCast system. Caltrans was instrumental in switching from a web-based to a scripted
inventory database loading procedure, which makes sense given the number of structures that
they are concerned with. Caltrans had trouble with SMTP email notifications in house and the
contractor worked with them to resolve this, and documented the correct approach to avoid this
difficulty for future users. Caltrans also had suggestions for documentation of the event
notification procedures and event types, which involve actual, scenario, test, and heartbeat event
types and wanted better documentation for testing the system. They also wanted screen shots of
all configuration procedures included in the user documentation. These suggestions were folded
into the software and user documentation.

Due to Caltrans’ favorable review and desire for ShakeCast, they plans to support further
enhancements of the ShakeCast system, including 1) an improvement to the Graphical User
Interface for web-based access and modification to the user, notification, facility, and fragilities
databases within ShakeCast, and 2) web-based tools for incorporating ShakeCast inventory status
into an in-house distributed (shared) mapping system, perhaps ArcGIS or MapServer.

California Department of Water, Division of Dam Safety (DWR). Contact: William Frazier

DWR has installed ShakeCast to dispatch inspectors to over 1,200 dams statewide. At the time
of this report, DWR was receiving ShakeCast notifications, but the extent of their use of the
facility and notification subsystems was not known. They had little trouble with the ShakeCast
installation, suggesting improvements made by interactions with the above users aided
significantly.

Washington State Department of Transportation (WashDOT). Contact: Steve Malone

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 8

WashDOT will receive ShakeCast notifications from the University of Washington based
ShakeMap system as soon as ShakeMap updates are accomplished there. WashDOT will be
working with UW Civil Engineer Marc Eberhard, who has established appropriate fragilities
based on Nisqually earthquake damage assessments. Dr. Eberhard has provided us with a very
useful way of prioritizing the facility listing: by threshold exceedence. Hence, in addition to the
ability to rank facilities in order of shaking level, one can sort them by the ratio of the shaking
metric (PGA, PGV, etc) to the threshold of exceedence. Such a listing provides a more logical
ranking of the structures to most likely have been damage. These changes have been added to
the notification portion of the documentation

Federal Emergency (FEMA). Contact: Douglas Bausch (Region VIII)

FEMA has installed ShakeCast in Denver with plans to import ShakeMaps from all US regions
producing these maps, and automating initiation of HAZUS-MH loss estimates. Though
installed, delays in implementation have resulted due to Doug’s assignments to respond to recent
hurricanes in Florida. However, feedback from Doug Bausch on the use of web proxy servers
was important since this type of firewall application is widespread and has now been folded into
the ShakeCast documentation.

Additional Contacts

Initial contacts and interest have been made with SBC Communications, Nextel Commun-
ications, Los Angeles County Department of Water and Power (LADWP), and the California
Earthquake Authority.

2.3 Development of Initial Default Facility and Fragility Databases

Recall that the approach for keeping a facility and fragility database in ShakeCast is the
responsibility of the user, not the USGS. This approach was chosen due to a number of reasons,
including maintaining confidentiality of facilities and their locations, and ever-changing
databases that the USGS would not be able to keep current. Likewise, users need to specify the
fragility of each facility in their database according to reported levels of the basic ShakeMap
parameters (instrumental intensity, peak acceleration, peak velocity, or one of three spectral
acceleration periods). Part of the effort with the ALA funded development went toward
providing examples of how these databases should be derived and populated.

The initial plan for default user databases was to have intact database (MySQL) tables for
example use. Discussions with users and the contractor resulted in a more logical approach. We
now have example text files (comma delimited) in the ShakeCast software download that are
easily readable and understandable. Then, a single-command processing script (“facimport”, for
facility import) was developed that propagates that “user friendly” format into the MySQL
database as needed. In this way, users can easily edit the text version of their databases, and then
simply update their relational database with the script.

Clear documentation for this script is provided in the user documentation. In addition, four

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 9

separate examples are provided under the Facility Import documentation, capturing the expected
range of facility and notification combinations. These examples are 1) Point Facilities, 2)
Fragility parameters, 3) Facility attributes, and 4) Multiple Attributes and Multiple Metrics.

ShakeCast can generate Damage Notification messages based on damage to specific facilities.
These messages are created and sent after the user’s ShakeCast Server has received most of the
ShakeMap Grid data from the upstream ShakeCast Servers. This can occur up to several minutes
after an earthquake event. The Damage Notification is used to alert specific people in the
organization who have responsibility for specific facilities or groups of facilities.

In order for ShakeCast to be able to estimate shaking and the potential for damage to a user’s
facilities, the facility date need to be loaded into the system. One way to do that is using the
Facility Administration Tool. This method is appropriate for defining small numbers of facilities,
such as for testing or evaluating ShakeCast. Larger numbers of facilities should be loaded using
the Facility Import Tool or directly into the ShakeCast MySQL database.

For each facility, low and high limits are chosen, along with the appropriate metric, one of the
ShakeMap parameters (Instrumental Intensity, peak acceleration, peak velocity or one of three
spectral acceleration periods). A text description of the three Damage Levels is associated with
the three possible metric ranges, that is, below the low limit, between the low and high limits,
and above the high limit. Typically these are Damage Unlikely, Damage Possible, and Damage
Probable.

Multiple metrics for a facility and for notifications are allowed with ShakeCast. For example, a
facility could be considered below the high limit for spectral acceleration at 1 sec period, but
above the high limit for the 0.3 sec period spectral acceleration. In such a case, and depending on
the way the user sets up notifications, the recipients would be notified of the exceedence for the
latter metric.

Currently, the metrics for fragility assignments are limited to one or more of the ShakeMap
metrics. It is conceivable that this approach could be expanded in the future to apply more
complex functions of these metrics with computations within the MySQL database. It is
anticipated that new, sophisticated users will desire such assignments and expand this capacity in
the open-source environment in which ShakeCast has been developed.

2.4 ShakeCast Promotion

Part of the promotion intent was to produce general information for non-technical users to be
come familiar with the ShakeCast system and its possibly uses. More technical guidelines were
provided on the ShakeCast web site and with documentation accompanying the ShakeCast
software download.

To this end, a ShakeCast Information Sheet (Appendix A.1) was produced and made available
online (http://www.shakecast.org/). This Information Sheet is in the process of being
transformed into a USGS Fact Sheet and an Applied Technology Council (ATC) Technical

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 10

Briefing. The publication of these, however, are at the mercy of resources, schedules, and
printing capacity of these two agencies. We have a Draft version of the ATC Tech Brief,
awaiting contributions from Caltrans and PG&E as user Case Histories.

ShakeCast promotion also included talks at National conferences, including Disaster Resistant
California in Sacramento, CA, a NATO meeting on Strong Motion Seismology in Turkey, and
the National Earthquake Conference in Saint Louis, MO. (Appendices A.1, A.2, and A.3). In
addition, David Wald (USGS), Bruce Worden (USGS) and/or Phil Naecker (Gatekeeper
Systems, Inc.) have been making onsite presentations to PG&E, Caltrans, Caltech/USGS CUBE
Users (Earthquake Affiliates Program), Los Angeles County Department of Water and Power,
and Nextel Communications.

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 11

Figure 2.1 ShakeCast Web Home Page

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 12

Figure 2.2 ShakeCast Web Page (Downloads)

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 13

Figure 2.3 ShakeCast Web Page (Documentation)

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 14

Figure 2.4 ShakeCast Web Page (What’s New)

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 15

References

Applied Technology Council (2003). ATC-54: Guidelines for Using Strong Motion Data and
ShakeMaps in Post-Earthquake Responses, published by Calif. Geological Survey &
Applied Technology Council. Available online at http://www.atccouncil.org/.

Development of a ShakeMap-based, earthquake response system within Caltrans, 2003, D. Wald,
P. Naecker, C. Roblee, and L. Turner, in Advancing Mitigation Technologies and Disaster
Response for Lifeline Systems, J. Beavers, Ed., Technical Council on Lifeline Earthquake
Engineering, Monograph No. 25, August 2003, ASCE.

ShakeMap—A Tool for Earthquake Response, 2003. , D. Wald, L.Wald, B. Worden, and J.
Goltz, U.S. Geological Survey Fact Sheet 087-03, found online at http://pubs.usgs.gov/fs/fs-
087-0.

Wald, D. J. B. Worden, H. Kanamori, T. H. Heaton, and V. Quitoriano (1999). TriNet
"ShakeMaps": Rapid Generation of Peak Ground Motion and Intensity Maps for
Earthquakes in Southern California, 1999. Earthquake Spectra, Vol. 15, No. 3, 537-556.

Wald, D. J., B. Worden, V. Quitoriano, and K. Pankow, (2004). ShakeMap Manual: Technical
Manual, Users Guide, And Software Guide, U.S. Geological Survey Open-File Report, in
Review.

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 16

 Appendix: Supplementary Documents

A number of supporting documents were produced not for final the ALA report, but rather for
actual user installation, operations, and use of ShakeCast, as well as for ShakeCast outreach to
the user community and technical documentation for programmers. These documents are
provided here separately in Appendix subsections.

A.1 ShakeCast Information Sheet

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 17

ShakeCast Information Sheet

ShakeCast: Automating, Simplifying, and Improving the Use of ShakeMap
for Rapid, Critical, Post-Earthquake Decision-Making and Response

When a potentially damaging earthquake occurs, utility and other lifeline managers,
emergency responders, and other critical users have an urgent need for information about the
impact on their facilities so they can make appropriate decisions and take quick actions to ensure
safety and restore system functionality. ShakeCast, short for ShakeMap Broadcast, is a fully
automated system for delivering specific ANSS ShakeMap products to critical users and
triggering established post-earthquake response protocols. ShakeCast allows utilities,
transportation agencies, and other large organizations to automatically determine the shaking
value at their facilities, set thresholds for notification of damage states (typically, damage
unlikely, moderate, or serious) for each facility, and then automatically notify (via pager, cell
phone, or email) specified operators, inspectors, etc., within their organizations who are
responsible for those particular facilities so they can prioritize response.

Background. ShakeMap (http://earthquake.usgs.gov/shakemap) is a tool used to portray
the extent of potentially damaging shaking following an earthquake. It is automatically generated
for both small and large earthquakes in areas where it is available, currently California, the
Seattle area, and in much of Utah; It is currently being developed in other areas of the country.
It can be used for emergency response, loss estimation, and public information. ShakeMap was
developed and is provided by the U.S. Geological Survey and its regional seismic network
collaborators as a product of the Advanced National Seismic System (ANSS).

Despite the popularity and acclaim of ShakeMap for emergency response and post-earthquake
information, there is a lack of recognition of the full potential of ShakeMap. That is, critical users need to
move beyond simply “looking at ShakeMap,” and begin implementing response protocols that use the
known shaking distribution in fully automated systems in order to fully realize this potential to prioritize
and greatly aid response efforts. To this end the USGS has begun the development of ShakeCast.

ShakeCast, short for ShakeMap Broadcast, will be a fully automated system for delivering
specific ShakeMap products to critical users and triggering established post-earthquake response
protocols. The ShakeCast system is currently being developed by Gatekeeper Systems, Incorporated of
Pasadena, under contract to the USGS and in collaboration with ShakeMap personnel. ShakeCast allows
utilities, transportation agencies, and other large organizations to automatically determine the shaking
value at their facilities. By setting thresholds for notification of increasing damage states (typically,
green, yellow, or red) of each facility type based on the shaking level determined by ShakeMap at that
site, notifications can be sent automatically via pager, cell phone, or email to specified operators,
inspectors, etc., within their organization responsible for those particular facilities. Notifications can be
organized to reach specific recipients depending on the level of damage and where the damage occurred.

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 18

Summary tables then allow managers, inspectors, and crews to respond in an organized, prioritized
fashion.

As an example of the need for such a system, the California Department of Transportation
(Caltrans) has over 25,000 bridges and overpasses under their responsibility in California. In addition,
regional control of traffic is under the auspices of 12 different operational centers, or Traffic Management
Centers (TMCs). Having an instantaneous snapshot of the likely damage to each will allow Caltrans to
prioritize rerouting traffic, closures, and inspections following a damaging earthquake. Caltrans is testing
the prototype ShakeCast system at this time.

ShakeCast Features. Organizations using ShakeMap/ShakeCast first download and install a software
package on a hardened in-house computer system. Initial setup then involves 1) populating a database of
facility locations and types or retrieving these from the user’s database, 2) tabulating the fragility to
specific ShakeMap parameters (e.g., peak or spectral acceleration) and the corresponding likely damage
states for these facilities (damage unlikely, moderate damage, and serious damage thresholds, for
example), 3) specifying who receives notifications by listing addresses of facility managers and response
personnel (email, pager, cell phone, and 4) selecting under what circumstances the alerts are sent (damage
“likely” at specific facilities). In addition to simplified pager notifications, a summary report is
automatically made and distributed as configured, providing a prioritized list of facilities based on their
likely damage state and including facility locations (including post miles) and the shaking level there. If
applicable, this summary information can be populate the user’s GIS or other relational database.

As soon significant shaking occurs and a ShakeMap is generated, and if basic (configurable)
magnitude or shaking levels are met, the user’s ShakeCast software downloads the parameters or maps
needed to evaluate each facility. The local facility database is then used to determine the shaking levels at
each site, likely damage outcomes are projected, and notifications proceed as configured. Critically, all
these actions happen automatically 7x24, with no user intervention or action required. Likewise, the
users’ facility database, perhaps proprietary and often changing, remains under the control of the user,
in house.

ShakeCast can also be configured on the user’s end to automatically transfer ShakeMap files (for
example GIS maps) to a specified location and initiate additional software processing tools and actions,
for example, starting up complex loss-estimation calculations via HAZUS or other loss estimation
software applications. Such an action is simply another form of notification.

In addition to real-time notification, another important feature of the ShakeMap/ ShakeCast
combination is its built-in capacity to generate and deliver Scenario Earthquakes for evaluating system
performance and response capabilities under earthquake conditions. ShakeMap is now used routinely to
generate earthquake scenarios for many users; ShakeCast will further allow these system tests to be
performed with the same notification tools that will be available and in place when a real earthquake
strikes.

Future Plans. While currently in development several aspects of the system will be further enhance
based on user interaction and feedback.

The delivery of critical post-earthquake information is a serious business; however, it is a difficult
problem. In the ShakeCast development, consideration of reliable, redundant transmission, security and
authentication, and documentation and version control of product delivery have all been considered from
the onset. In addition, Information Technology security concerns are paramount. However, is quite clear
that ongoing IT security concern and changes within organizations will present ongoing development
hurdles. These will be addressed as necessary through direct user interfacing in our prototype
installations. We expect the solutions we develop through these initial installations to be robust and

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 19

therefore can be used for wider distribution of ShakeCast to other users. These tools will also be
beneficial for other rapid post-disaster notification and alerting systems.

Further research and development needs to be focused on facilitating the development of fragility
(vulnerability) relationships necessary to utilize shaking information in real-time. That is, each utility and
transportation organization has an array of facility, building, and component types with varying degrees
of knowledge of their individual vulnerability, and highly variable levels of in-house expertise needed to
establish and properly use fragility relationships in order to assign likely damage states in real time. A
systematic approach to this development, and formal guidelines on the use of such facility/fragility
assignments would be more cost-effective than relying on individual organizations to develop their own
strategies (a task many have not or may not otherwise take on). We will also begin to focus more on
developing and promoting guidelines by which current and future fragility analyses can take advantage of
the rapid post-earthquake information provided by ShakeMap and ShakeCast by considering the specific
parametric values ShakeMap produces, mainly peak ground motion and spectral accelerations. By
providing and promoting this need, ongoing and additional studies will provide fragility values suitable
for post-earthquake response and will continue expansion of a fragility matrix from which new users can
select appropriate values.

When and where will ShakeMap/ShakeCast be available? Ongoing software development and beta testing of
ShakeCast are progressing rapidly. Availability of the fully operational system will be widely publicized through
standard Lifeline, Emergency Response publications, newsletters, and web pages including the USGS and Regional
Networks, the Applied Technology Council (ATC), the Earthquake Engineering Research Institute (EERI), and
American Lifelines Alliance (ALA).

References:

Development of a ShakeMap-based, earthquake response system within Caltrans, 2003, D. Wald, P.
Naecker, C. Roblee, and L. Turner, in Advancing Mitigation Technologies and Disaster Response for
Lifeline Systems, J. Beavers, Ed., Technical Council on Lifeline Earthquake Engineering, Monograph No.
25, August 2003, ASCE.

ShakeMap—A Tool for Earthquake Response, 2003. , D. Wald, L. Wald, B. Worden, and J. Goltz,
U.S. Geological Survey Fact Sheet 087-03, online at http://pubs.usgs.gov/fs/fs-087-0.

TriNet "ShakeMaps": Rapid Generation of Peak Ground Motion and Intensity Maps for
Earthquakes in Southern California, 1999. D. J. Wald, V. Quitoriano, T. H. Heaton, H. Kanamori, Cr.
W. Scrivner, and C. B. Worden (1999). Earthquake Spectra, Vol. 15, No. 3, 537-556.

ShakeMap Manual – Technical Manual, Users Manual and Software Guide, Wald, D. J., B. Worden,
V. Quitoriano, Pankow, K. (2004). Manuscript in preparation.

Contact:
David Wald, Ph.D., U.S. Geological Survey, Golden, wald@usgs.gov, (303) 273-8441

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 20

Simplified ShakeCast Flowchart

DEVELOPERS:

SUPPORT FROM:

AmericanLifelinesAlliance

PROTOTYPE TESTING:

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 21

A.2 Disaster Resistant California Conference Proceedings, Sacramento, 2004.

2004 Disaster Resistant California
Conference

New Tools from the California Integrated Seismic Network (CISN)
and Advanced National Seismic System (ANSS)

The CISN and ANSS Integrated Products Team1

Abstract

To better serve the earthquake emergency management and response,
engineering, and scientific communities, several agencies in California have formed the
California Integrated Seismic Network (CISN). The CISN is one region of the Advanced
National Seismic System (ANSS), a larger system being developed under the auspices
of the U.S. Geological Survey (USGS) in cooperation with CISN and seismic network
operators in other areas of the US. In this paper we highlight ongoing development of
new CISN and ANSS products and web pages, with emphasis on the utility of these
products as they pertain to disaster resistance. In additions to an improved web
presence, the CISN partners are currently working on improving the robustness of
statewide earthquake notification and developing applications to facilitate interpretation
of rapid earthquake information and damaging ground motions. One such notification
product is CISN Display, an application for visualization of seismicity and ground
shaking for critical users. The ANSS is complementing CISN activities by focusing
ongoing development of ShakeMap, a tool used to portray the extent of potentially
damaging ground shaking following an earthquake, and ShakeCast, an application for
automating ShakeMap delivery and triggering established post-earthquake response
protocols.

Background - CISN and the ANSS

A modern seismic system is vital for providing timely and accurate information about
earthquake activity and earthquake effects and for reducing loss of life and property from
earthquake disasters. The partners of the California Integrated Seismic Network (CISN), a

1Correspondence can be directed to David Wald, U. S. Geological Survey, Golden, CO, wald@usgs.gov. A list of
contributors to this article can be found in the Acknowledgements.

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 22

component region of the United States Geological Survey’s (USGS) Advanced National Seismic
System (ANSS, U.S. Geological Survey, 1999), are committed to rapidly providing advanced
earthquake information for disaster mitigation. The members of the CISN are the California
Geological Survey, the California Institute of Technology Seismological Laboratory, the
University of California, Berkeley Seismological Laboratory and the USGS offices in Menlo
Park and Pasadena. The California Governor's Office of Emergency Services is an ex-officio
participant in the CISN and is a primary recipient of the rapid post-earthquake information and
hazard analyses provided by the CISN.

Advances in Web-based Information

A number of new developments and applications are available via our web sites. We
discuss these advances in detail below, but since these and other applications are changing and
improving rapidly, we provide more up to date information at the CISN website
http://www.cisn.org, and at http://earthquake.usgs.gov, the website of the USGS Earthquake
Program which is the umbrella organization for the ANSS. Part of our emphasis for web-based
information delivery is a continued emphasis on bandwidth and redundancy: Both CISN and the
ANSS have multiple, distributed servers in geographic distributed locations.

Recent Earthquake Maps. For most users, the seismicity maps (Figure 1) provide the
starting point for earthquake information. Users typically select a specific region and ”drill
down” to more detailed maps and summary information about a specific earthquakes. The
Recent Earthquake website provides general background as well as direct links to additional
information and products. We are experimenting with automatic webpage refreshing of the
Recent Earthquake pages, allowing users to see new events show up automatically within
minutes of their occurrence. A new feature of the Recent Earthquake Maps is the ability to
select a fault of interest and follow a link to a detailed USGS Fault Activity Database for that
fault.

Earthquake in the News. For earthquakes that are strongly felt or that result in damage and
casualties, we create a Special Report that appears on the front page of the CISN & ANSS
homepages (Figure 1, M5.0 WYOMING earthquake). This webpage includes links to products,
such as geographical and tectonic summary maps of the region, aftershock probabilities and
maps, earthquake fault models, hazard maps, and links to news and other information.
Informative background information summaries— called Rapid Tectonic Summaries—are now
produced automatically in many areas of the country and the world, and are delivered through
the Earthquake in the News mechanism.

Earthquake Summary Posters. For major or damaging events, we also produce a new GIS-
based product (Figure?) within a day or two of the event, which summarizes figures from

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 23

Earthquake in the News in a poster form (web and downloadable PDF formats). These high
quality event overviews provide the basis for briefings and post-earthquake evaluation.

Earthquake Notification Services. Automatic notification in near-real time is available in
text messages for email, cell, and pagers. Sign-up can be done at the CISN Notification Services
(Figure 2). Formerly, notification was made via an email List Server, which limited the range of
possible notifications. These services are currently undergoing modifications to improve
customization of the range of conditions under which automatic notification occurs (e.g.,
location, magnitude threshold, time of day, etc.). We are undergoing testing of a Customized
Notification Service, which entails a database for associated specific users with more detailed
notification conditions. We are also allowing users to sign up for Really Simple Syndication
(RSS), a notification service that brings earthquake information to their screen automatically.
Users may be familiar with RSS for getting delivery of breaking news headlines. Finally, for
7x24 operations centers we provide a fundamentally improved automatic notification product,
CISN Display, as discussed below.

Did You Feel It? We create an online questionnaire for any felt earthquake, on which users
indicate the perceived level of shaking at their location (specified by zipcode). The software
uses this information to generate an intensity map that provides a rapid assessment of the extent
of shaking from the human perspective. For regions with sparse seismic station coverage these
maps provide a stand-in for ShakeMap (see below).

Strong Motion Data Center. The CISN Engineering Strong Motion Data Center is operated
by CGS and provides seismograms for engineering applications typically for events above
magnitude 4.0. These data are distributed via the Internet Quick Report (IQR). In addition, for
more significant events a more complete Internet Data Report (IDR) is produced.

CISN Display

This near real-time, interactive Graphical User Interface (GUI, see Figure 3) provides
seismicity, ground shaking information (via ShakeMap), and other earthquake products for the
24/7 operations center. Unlike web pages, earthquake information is pushed to CISN Display in
near real-time that receives data over the Internet. It is a stand-alone software application
(written in Java) and can be run on several operating systems. Central to the GUI is a GIS
mapping engine that is capable of plotting user-customizable themes (facilities, roadways, etc.)
that allows comparison of user’s infrastructure along with seismic hazards to help evaluate the
situation interactively. The primary application of CISN Display is real-time seismicity
monitoring; the system automatically posts updates and can provide audible beeps to alert the
user.

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 24

In addition, other products associated with the event, like ShakeMap, Did You Feel It?
Maps, and aftershock probabilities, are provided by the Display as they become available. The
system can automatically download ShakeMap overlays as GIS layers, which can be modified
and joined with other layers to form a clear picture of the severity and distribution of shaking
with respect to critical infrastructure. CISN Display is currently in beta-testing within several
organizations and version 1.0 is expected to be released in Spring 2004. It performed well during
the recent magnitude 6.5 San Simeon, California, earthquake sequence.

ShakeMap and ShakeCast

ShakeMap. ShakeMap is a tool used to portray the extent of potentially damaging
shaking following an earthquake (see http://earthquake.usgs.gov/shakemap). This is
but one end product of a modern seismic network capable of producing near real-time,
magnitude, location, and ground-motion parameters. The rapid availability of these
maps is of particular value to emergency response organizations, utilities, insurance
companies, government decision-makers, the media, and the general public. The
ANSS and CISN are continuing the development of the ShakeMap system. In particular,
they are working to integrate the southern and northern California systems for statewide
coverage.

 We have finished a draft ShakeMap Manual, including a Technical Manual, Users’
Guide, and Software Guide (Wald et al., 2004). The Applied Technology Council’s ATC-
54: Guidelines for Using Strong Motion Data and ShakeMaps in Post-Earthquake
Responses recent (Applied Technology Council, 2003) provides examples of how
ShakeMap can be used. We have also published a new four-page ANSS ShakeMap
USGS Fact Sheet, for more general information and outreach (Wald et al., 2003).

ShakeCast. When a potentially damaging earthquake occurs, utility and other lifeline
managers, emergency responders, and other critical users have an urgent need for information
about the impact on their facilities so they can make appropriate decisions and take quick actions
to ensure safety and restore system functionality. ShakeCast, short for ShakeMap Broadcast, is a
fully automated system for delivering specific ANSS ShakeMap products to critical users and
triggering established post-earthquake response protocols. ShakeCast allows utilities,
transportation agencies, and other large organizations to automatically determine the shaking
value at their facilities, set thresholds for notification of damage states (typically, damage
unlikely, moderate, or serious) for each facility, and then automatically notify (via pager, cell
phone, or email) staff within their organizations who are responsible for those particular facilities
so they can prioritize response. The system will initiate post-processing software applications
automatically (for example, loss estimation routines). Currently, USGS “pushes” ShakeMap
electronically (using ftp) to utilities and other critical users, but ShakeCast will allow this to be
replaced with a subscriber service, avoiding firewall issues, and providing more robust delivery
from redundant ShakeMap generation sites and distributed ShakeMap servers. A simplified
flowchart of the ShakeMap/ShakeCast system is shown in Figure 4.

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 25

Prompt Assessment of Global Earthquakes (PAGE)

PAGE is a prototype system that monitors the U.S. Geological Survey's Advanced
National Seismic System's (ANSS) near real-time global earthquake solutions and
automatically identifies events that will be of societal importance, well in advance of
ground-truth news accounts. Events that are likely to have caused human suffering and
significant damage, or events that are widely felt and will therefore generate public and
media attention, are so classified. PAGE makes this assessment within a few minutes
of an earthquake’s detection based on analysis of estimated shaking levels and
evaluation of the vulnerability and the population at risk. For significant events, PAGE
automatically generates and distributes a summary impact statement to emergency
response teams, the media, and the general public. The basic concept for PAGE is
straight-forward. However, the implementation, gathering of the necessary data sets,
testing, and most importantly the effective use of our results will require significant
system development and communication with potential users.

Acknowledgements

The ANSS Integrated Products Team consists of D. Wald, D. Oppenheimer, D. Given, H. Benz,
W. Savage, R. Buland, and T. S. Yelin. Contributors to this article are: D. Wald, L Wald, D.
Oppenheimer, H. Benz, W. Leith, J. McCarthy, R. Simpson, S. Schwarz, B. Worden, V.
Quitoriano, H. Rico, E. Hauksson, L. Gee, P. Earle, and L. Lystoka.

References

Applied Technology Council (2003). ATC-54: Guidelines for Using Strong Motion Data and ShakeMaps
in Post-Earthquake Responses, published by Calif. Geological Survey & Applied Technology
Council. Available online at http://www.atccouncil.org/.

U. S. Geological Survey (1999). An Assessment of Seismic Monitoring in the United States Requirement
for an Advanced National Seismic System, USGS Circular 1188.

Wald, D. J., L.Wald, B. Worden, and J. Goltz (2003). ShakeMap—A Tool for Earthquake
Response, U.S. Geological Survey Fact Sheet 087-03. Available online:
http://pubs.usgs.gov/fs/fs-087-0 or Contact L. Wald (lisa@usgs.gov) for copies.

Wald, D. J., B. Worden, V. Quitoriano, and K. Pankow, (2004). ShakeMap Manual: Technical
Manual, Users Guide, And Software Guide, U.S. Geological Survey Open-File Report, in
preparation.

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 26

Figure 1. U. S. Geological Survey’s Earthquake Program and Recent Activity page.

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 27

Figure 2. CISN Notification Services web page.

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 28

Figure 3. CISN Display’s Graphical User Interface.

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 29

Figure 4. ShakeCast Flowchart.

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 30

Figure 5. Earthquake Summary Poster example (for the magnitude 6.5 December 22, 2003, San
Simeon, California, earthquake).

USGS ShakeMap/ShakeCast Final Report

September 30, 2004 Page 31

A.3 Abstract for the National Earthquake Conference, St. Louis, Sept., 2004.

What Just Happened?Rapid Post-Earthquake Information from the
 Advanced National Seismic System (ANSS)

David J. Wald

U. S. Geological Survey, Golden, CO, wald@usgs.gov

To better serve the nation’s emergency management and response, engineering, and scientific
communities, more and better seismic data are being collected and more powerful and useful
data products are being developed under the auspices of the Advanced National Seismic System
(ANSS) by the U.S. Geological Survey (USGS) and its ANSS partners in academia, government,
and industry. New, rapid analyses are available via our web sites, with distributed servers
providing both bandwidth and redundancy during earthquake disasters. Recent
Earthquake Maps, Earthquakes in the News, and Earthquake Summary Posters
provide rapid post-earthquake summaries of seismicity, tectonic context, earthquake
effects, and other important information for significant events, not only nationally but
also globally. In addition, we are moving beyond enhanced earthquake web pages to
push earthquake information to users who have a need for near real-time earthquake
analysis. One such notification product is CISN Display, an application for visualization
of seismicity and ground shaking for critical users, developed primarily by the ANSS
California Integrated Seismic Network (CISN) partners. The first release of
QWEmailer, also now available from CISN, enables users to automatically issue
earthquake notification (email and short text messages) specific to their needs. The
ANSS is complementing CISN advances through ongoing development of ShakeMap, a
tool used to portray the extent of potentially damaging ground shaking following an
earthquake, and with ShakeCast (http://www.shakecast.org/), an application for
automating ShakeMap delivery to users and facilitating notification of shaking levels at
user-selected facilities. Finally, we describe advancing uses of and development of Did
You Feel It?, a popular citizen-science, internet-based tool for rapidly mapping post-
earthquake seismic intensities, which is particularly useful in areas of the U.S. not yet
well covered by ANSS instrumentation. Development of these and other products will
be discussed in detail. These applications are changing and improving rapidly; up-to-
date earthquake information is available online at http://earthquake.usgs.gov/ and links to
new software can be found at http://www.cisn.org/software/. These products rely
fundamentally on magnitudes, hypocenters, and ground motion data, including urban arrays,
collected and interpreted at regional and national seismic data centers under the ANSS.
Improvement in accuracy and quality of these critical products depends directly on the growing
national investment in more instruments in urban settings.

DRAFT

System Specification
for

ShakeCast

“ShakeCast: Delivering Earthquake Shaking
Data to the People Who Need It”

Software Version 1.0
Documentation Version 1.0

July 2004

ii Gatekeeper Systems July 2004

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure of this document or of the software described herein is governed by the terms
of a License Agreement or, in the absence of an agreement, is subject to the restrictions stated in subpara-
graph (c) (1) of the Commercial Computer Software –Restricted Rights clause at FAR 52.227-19 or sub-
paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013, as applicable. Contractor/Manufacturer is Gatekeeper Systems, 1010 E. Union St, Pasadena CA
91106, 626 449 8135, 800 424 3070, Info@Gatekeeper.com, http://www.gatekeeper.com/.

Form Number: GKS 2003-6

Unpublished work – protected under the copyright laws of the United States.

Copyright © 2003 by Gatekeeper Systems. All rights reserved.

ShakeCast System Specification

July 2004 Gatekeeper Systems iii

Table of Contents

Chapter 1 Introduction ...1-1

1.1 Introduction to the ShakeCast Project..1-1

1.2 Background ..1-2

1.3 ShakeCast Software Design Philosophy..1-4

1.4 ShakeCast Users...1-4

1.5 Technical Features of the ShakeCast Software System..1-5

1.6 ShakeCast Software Development Plans ..1-6

1.7 ShakeCast Terms and Terminology..1-7
1.7.1 ShakeCast Server..1-7
1.7.2 Upstream and Downstream..1-7
1.7.3 Event ...1-7
1.7.4 ShakeMap and ShakeMaps..1-7
1.7.5 Exchange ..1-8
1.7.6 Product..1-8
1.7.7 Product Metric..1-8
1.7.8 Facility ..1-8
1.7.9 Fragility ..1-8
1.7.10 Damage Level...1-8
1.7.11 Notification...1-9

1.8 ShakeCast Network Topology..1-9

Chapter 2 ShakeCast Request Format and Parameters ..2-1

2.1 Introduction to ShakeCast Requests ...2-1

2.2 The ShakeCast Request Format ..2-1
2.2.1 Request Parameters ..2-2
2.2.2 HTTP Headers..2-2
2.2.3 ShakeCast Status XML..2-2
2.2.4 XML URLs in ShakeCast Requests ..2-2
2.2.5 Other Returned Data in ShakeCast Requests ..2-3

2.3 ShakeCast Request Parameter Formats...2-3
2.3.1 Time Usage and Date and Time Formats..2-3
2.3.2 Latitude, Longitude, and Bounding Boxes..2-4
2.3.3 Server IDs and Server Names..2-4

2.4 Upstream and Downstream ShakeCast Machines ..2-4

2.5 Security and Authentication...2-5
2.5.1 Introduction to Security and Authentication ...2-5
2.5.2 Authorized ShakeCast Servers ..2-5
2.5.3 ShakeCast Server Logins ...2-5
2.5.4 Secure Communications ..2-5
2.5.5 ShakeCast use of Public Key Infrastructure..2-6
2.5.6 ShakeCast Use of IP Addresses and DNS...2-6

ShakeCast System Specification

iv Gatekeeper Systems July 2004

Chapter 3 ShakeCast Requests ...3-1

Chapter 4 ShakeCast Interactions ..4-1

4.1 Poll and Request Interactions ..4-1
4.1.1 Poll for Event and Get Resulting Products..4-1
4.1.2 Poll for Product Update ...4-2
4.1.3 Poll for Server and Metadata Updates...4-2
4.1.4 Provide Heartbeat...4-3

4.2 Server Push Interactions...4-3
4.2.1 New Event Push from ShakeMap Server..4-4
4.2.2 New Event Push from ShakeCast Server ..4-4
4.2.3 New Event and Product Push from ShakeCast Server ...4-5
4.2.4 More Interactions ...4-6

4.3 Registration Interactions ..4-6
4.3.1 Register New Downstream Server ..4-6
4.3.2 Update Metadata for Existing Downstream Server ..4-6
4.3.3 Request Complete Metadata Update ...4-7

Chapter 5 XML Documents ..5-1

5.1 Introduction to ShakeCast XML ...5-1
5.1.1 [tbs] ...5-1

5.2 Event XML ...5-1

5.3 Product XML ...5-2

5.4 ShakeMap XML...5-2

5.5 Server Status XML..5-3

5.6 ShakeCast Status XML...5-3

5.7 ShakeCast Metadata XML...5-3

Chapter 6 The ShakeCast Database..6-1

6.1 Introduction..6-1

6.2 Database Tables for Servers and System Administrators..6-2
6.2.1 SERVER...6-3
6.2.2 SERVER_STATUS ...6-4
6.2.3 PERMISSION ..6-5
6.2.4 SERVER_PERMISSION ..6-5
6.2.5 SERVER_ADMINISTRATOR...6-5
6.2.6 ADMINISTRATOR_ROLE..6-6

6.3 Database Tables for Events, ShakeMaps, and Products ..6-6
6.3.1 EVENT ...6-7
6.3.2 EVENT_STATUS..6-8
6.3.3 EVENT_TYPE...6-8
6.3.4 SHAKEMAP..6-9
6.3.5 SHAKEMAP_STATUS ..6-10
6.3.6 SHAKEMAP_REGION ..6-10
6.3.7 PRODUCT ...6-10
6.3.8 PRODUCT_STATUS..6-11

ShakeCast System Specification

July 2004 Gatekeeper Systems v

6.3.9 METRIC ...6-11
6.3.10 PRODUCT_TYPE ...6-12
6.3.11 GRID...6-12
6.3.12 GRID_VALUE...6-13
6.3.13 SHAKEMAP_METRIC ..6-13
6.3.14 EXCHANGE_LOG..6-14
6.3.15 EXCHANGE_TYPE..6-14
6.3.16 EXCHANGE_ACTION ..6-15

6.4 Database Tables for Notification ...6-15
6.4.1 FACILITY..6-16
6.4.2 NOTIFICATION_REQUEST ...6-17
6.4.3 NOTIFICATION..6-18
6.4.4 DELIVERY_STATUS...6-19
6.4.5 DAMAGE_LEVEL..6-19
6.4.6 MESSAGE_FORMAT ..6-19
6.4.7 FACILITY_FRAGILITY ..6-20
6.4.8 NOTIFICATION_TYPE ...6-20
6.4.9 NOTIFICATION_CLASS...6-20
6.4.10 SHAKECAST_USER..6-21
6.4.11 USER_TYPE..6-21

6.5 Internal Operational Tables ...6-21
6.5.1 Processor Parameter Table...6-22

Chapter 7 Notification Processing ..7-1

7.1 Notification Processor Basics ...7-1
7.1.1 Initiation of the Notification Processor by the Exchange Processor..7-1
7.1.2 Notification Processor Environment ...7-2
7.1.3 The Notification Request Table...7-2
7.1.4 Simple Event Notification..7-3
7.1.5 The Notification Queue Table ...7-4

7.2 Message Delivery Processor ...7-6
7.2.1 Selecting Messages to Send...7-6
7.2.2 Message Aggregation...7-6
7.2.3 Completion of Notification Queue Entries..7-7
7.2.4 Iterative Message Processing..7-7

7.3 Notification Signup Web Page ...7-8

7.4 Event Notification ..7-8

7.5 Product Notification ..7-9
7.5.1 Product Notification Without Facility...7-9
7.5.2 Product Notification With Facility ..7-10

7.6 Grid Notification..7-10
7.6.1 Outstanding Grid Notification Records...7-11
7.6.2 First Level Filter on Product Maximum Value...7-11
7.6.3 Fine Granularity Notification Request Processing ...7-12

7.7 Metadata Update Notification..7-12

7.8 Registration and New System Notification...7-13
7.8.1 System Registration and Notification..7-13

ShakeCast System Specification

vi Gatekeeper Systems July 2004

7.8.2 Registering Other New Systems..7-14
7.8.3 Approving Registration Requests..7-14

7.9 ShakeCast System Activity Notification ...7-15
7.9.1 Error Notification ...7-16

7.9.1.1 System Restart...7-16
7.9.1.2 Communication Error Limit ...7-16
7.9.1.3 Delivery Attempts Limit ...7-16

7.9.2 System Configuration Notification..7-16
7.9.2.1 New System Added...7-16

7.9.3 Usage Notification ...7-16
7.9.3.1 Daily and Monthly Usage Report...7-16
7.9.3.2 Daily and Monthly Exchange Report ...7-16
7.9.3.3 User Summary Report...7-16

Chapter 8 Exchange Processing ...8-1

8.1 Creating and Updating ShakeCast Databases ...8-1

8.2 The ShakeCast Exchange Log..8-2

8.3 Metadata Exchanges..8-2

8.4 Data Exchanges ..8-3
8.4.1 Data Exchanged as Request Parameters..8-3
8.4.2 Data Exchanged as XML...8-4

8.5 Product File Exchanges...8-4

8.6 Grid File Exchanges ..8-4

Chapter 9 Invoking External Procedures from ShakeCast...................................9-1

9.1 Overview ...9-1

9.2 External Script Environment...9-1

9.3 Environment Variables and Parameters ..9-1

9.4 Returning Status Values ...9-1

Chapter 10 Testing ShakeCast..10-1

10.1 Overview..10-1

10.2 Server Self-Test Functions ..10-1

10.3 Communication Tests ..10-1

10.4 Processing Standard Test Messages...10-1

10.5 Test Logs and Test Error Reporting ...10-1

Chapter 11 ShakeCast Administration User Interface..11-1

11.1 Overview..11-1

11.2 Notification Requests and Notification Pages...11-1

11.3 User Administration Pages..11-1

11.4 System Configuration Pages ...11-1

ShakeCast System Specification

July 2004 Gatekeeper Systems 1-1

Chapter 1 Introduction

This document describes the ShakeCast System. It is intended for software developers, data-
base administrators, and system administrators who work with the ShakeCast system software.
A companion document, the ShakeCast User’s Guide, describes the features and use of the
ShakeCast System from the point of view of end users.

This Chapter introduces the function and purpose of ShakeCast This Chapter also introduces
and defines some of the main concepts and terms used in the rest of the document.

1.1 Introduction to the ShakeCast Project
The rapid and reliable dissemination of detailed earthquake information is of great importance
for public safety and emergency response. This information is needed by all kinds of facility
owners, such as municipalities, utilities, building managers, schools, and many others. Such
organizations would like to be “consumers” of earthquake information, but currently have no
simple technology that they can use to readily access and make use of earthquake information.

The ShakeCast System is designed to be a simple, reliable, and widely deployable software tool
that any modestly capable computer user can install on their computer to receive and make use
of customized and personalized earthquake information. We call the system ShakeCast (short
for “ShakeMap Broadcast”) because its purpose is to broadcast ShakeMaps. ShakeCast consists
of a receiver component (client) and a transmitter component (server). The information to be
disseminated via ShakeCast is the output of the USGS ShakeMap system, which provides early
estimates of the severity of shaking during an earthquake and thus is a good tool for estimating
the likelihood of damage to structures and societal impact.

The ShakeCast software does much more than simply display maps of the areas affected by an
earthquake. It will also:

• Automatically receive and process notifications of earthquakes

• Let you define locations (representing structures and facilities) of interest to you, and set
shaking thresholds that will trigger automatic notification

• Provide you with electronic notification (pager, email, personal web pages, etc.) of events
and projected shaking intensity at facilities you specify

ShakeCast System Specification

1-2 Gatekeeper Systems July 2004

• Reliably manage the receipt of updated shaking data from multiple ShakeCast servers dis-
tributed around the Internet, so that you have a excellent chance of receiving an uninter-
rupted and authenticated data feed even after a major event

• Easily integrate with in-house GIS systems, control systems, utility outage management
systems, and other business systems in your organization

• Provide a mechanism for continual end-to-end testing of the ShakeCast system, so that you
can be assured that the system is working properly when you eventually need it

The benefits of the ShakeCast system are substantial:

• ShakeCast allows individuals and facility owners to make widespread and immediate use of
the beneficial information already in ShakeMap. ShakeCast takes advantage of the very
substantial investment already made in ShakeMap and in the very large seismic monitoring
infrastructure behind it.

• The ShakeCast system provides quantitative metrics on the use of ShakeMaps both before
and after an earthquake. This data is then available for policy decisions on the future direc-
tion of the ShakeMap and ShakeCast systems. The ShakeCast system will return detailed
information about these users that will help ShakeMap planners better understand how
ShakeMap data is used.

• ShakeCast should help engage and involve managers and policy makers at a wide variety of
institutions (e.g., state transportation departments, municipal governments, emergency re-
sponders, utilities, etc.) who are concerned about timely receipt of earthquake shaking data.

The next Section of this document provides a brief background discussion on the history and
challenges of the broadcast of earthquake information and then describes how the ShakeCast
system addresses these issues.

1.2 Background
Historically, the only objective data about possible damage available immediately after an
earthquake has been an early estimate of “location and magnitude". Such a simple metric can
easily be broadcast using simple communications technologies such as radio, television, email
and pagers. For facility managers responsible for geographically dispersed facilities, however,
a simple location and magnitude is of limited practical utility because it does not yield a mean-
ingful estimate of the likelihood of damage at each facility with sufficient detail to guide facility
managers in their initial emergency response activities.

A much more useful metric of damage likelihood has been devised: a "ShakeMap". This map
estimates, with accuracy appropriate for use by ShakeCast consumers (utilities, school districts,
municipalities, etc.), the "shaking" (intensity, peak ground acceleration, velocity, and spectral
response) that structures were likely subjected to during an earthquake. A ShakeMap provides a
good first-order estimate of the likelihood of damage, and when enhanced by data about the
structural resilience of facilities, ShakeMap can provide extremely valuable information to fa-
cility owners directing early response to an earthquake.

The United States Geological Survey (USGS) has developed an automated system for comput-
ing ShakeMaps. This system is now generating ShakeMaps within a few minutes after an
earthquake, which is early enough to be of considerable value for emergency response. This

ShakeCast System Specification

July 2004 Gatekeeper Systems 1-3

system is now operating in four Western regions of the United States (Southern California,
Northern California, the Pacific Northwest, and Utah). Other regions may come online in the
future.

Once people know an earthquake has occurred, they can visit the ShakeMap web sites to obtain
maps and data. However, few organizations have the technical means use this data other than
by “just looking at it”. Although a few companies have in the past received a “push” of
ShakeMap data, there was not a reliable dissemination method for promptly broadcasting this
data to the many thousands of individuals and organizations that need it. Nor is the information
readily available in a form that those individuals and organizations can easily use.

Disseminating earthquake shaking information is a difficult problem, for a variety of technical
reasons:

• Wide adoption of such a system will depend upon reliable transmission of data, even if
communications networks have been damaged.

• There is a wide variety of data products that must be delivered for different users, including
different metrics of shaking intensity (e.g., peak acceleration, velocity, etc.).

• The spatial variability of shaking intensity is critical, and most consumers of the data are
likely interested only in data for specific locations where they own or manage facilities that
might be damaged by earthquake shaking.

• There are difficult technical problems with triggering and alarms, to ensure that the proper
people and systems are notified when specific events occur but that false alarms do not oc-
cur.

• It is important to ensure the authenticity of the earthquake data, so that organizations mak-
ing operational decisions can be certain that the information came from a reliable source.

• It is important to keep track of updated versions of each data product so that as new infor-
mation arrives it can be seamlessly related back to the original event and previous version of
the data and to decisions that may have been made based on the prior data.

• There are important issues of event timing and timeliness, and it is critical that data from
multiple sources relating to the same event or closely related events (e.g., aftershocks) be
properly correlated.

• There is wide variance in the types, sophistication, and purposes of the organizations and
computer systems that will consume the data.

Further major complications center on the infrequency of events. Historically, earthquake-
related automated systems have not functioned flawlessly, because earthquakes are very infre-
quent, widely distributed, and extremely variable in their mechanism and damage characteris-
tics. It is a significant technical challenge to build a network of interacting computer systems
that is guaranteed to function when an earthquake actually happens. The system must be robust
enough to "set it and forget it," possibly for years, yet flexible enough and simple enough to
manage so that new data products and tools can be added without impacting reliability.

ShakeCast System Specification

1-4 Gatekeeper Systems July 2004

1.3 ShakeCast Software Design Philosophy
Fortunately, there exists in the Internet community most of the software tools and protocols for
building a robust system that meets the technical requirements of an earthquake information
dissemination system. What is required is small amount of new software, a software framework
for the broadcast of ShakeMaps, and set of protocols that defines how the system utilizes al-
ready-available Internet tools. These elements can then be implemented in an open source ref-
erence system that can be easily installed by any modestly capable system administrator, and
easily extended and customized for local applications by any developer with a modest knowl-
edge of current Internet tools.

The design of ShakeCast takes full advantage of the software tools that are widely available and
commonly used on the Internet. The ShakeCast system is intended as not a final software solu-
tion to be used identically by every site, but as a reference implementation: working software
that others can either use or extend as they wish. The reference implementation is freely
downloadable and will perform all of the basic functions needed by a consumer of earthquake
shaking data, including:

• Automated notification (email, pager, etc.) of excessive "shaking" (using various defini-
tions) at a list of specific locations

• Notification regarding events of various kinds internal to the ShakeCast system, including
system activity above a specified threshold or failure of internal test procedures

• Reliable, coordinated, and non-duplicated receipt of data from multiple sources

• "Hooks" to incorporate this data in other corporate information systems, such as GIS sys-
tems, control systems, internal alarm systems, and the like

• Simple installation on Windows NT/2000/XP, Linux, FreeBSD, Solaris, and other operating
systems, including automatic registration (“sign-up for data”) with ShakeCast broadcasters

• A robust quality assurance system that continually verifies that the entire ShakeCast system
is functioning correctly end-to-end

• A complete system of usage monitoring, logging, and reporting, so that the administrators of
individual ShakeCast receivers and the administrators of the ShakeCast servers will be able
to assess how and how much ShakeMaps are being used.

Our design goal for the ShakeCast reference implementation is that a modestly knowledgeable
personal computer user can install the entire system and begin receiving useful, reliable,
authenticated, location-specific reports of earthquake shaking with about an hour of effort. A
further goal is to create a community of software developers who work for enterprises who are
consumers of ShakeMap data. This community of developers is then able to continue en-
hancement and extension of ShakeCast so that ShakeMap information can be made more read-
ily usable by their organizations.

1.4 ShakeCast Users
ShakeCast receiver software is designed to be easy to install and configure, and will run on a
wide variety of computer systems. It is intended for a wide variety of user organizations:

ShakeCast System Specification

July 2004 Gatekeeper Systems 1-5

• Public Utilities may use ShakeCast to generate alarms indicating possible impacted facilities
and to direct initial response and post-earthquake inspection efforts.

• Public Safety Agencies may use ShakeCast to help plan the deployment of emergency re-
sources

• Property Mangers will use ShakeCast to prioritize the dispatch of inspection and repair per-
sonnel to their properties

• Individuals will use ShakeCast to ascertain the likelihood of damage or possible injury to
loved ones, homes, or property

1.5 Technical Features of the ShakeCast Software System
The following tables and figures briefly describe some of the important technical features and
design elements of the ShakeCast software and protocols.

ShakeCast Server Software Features

Feature Description

Multi-platform Available on PCs and Unix systems

Easy installation and
configuration

Installation and basic configuration in less than an hour in most
cases

Automated registration Automatic software registration with ShakeCast broadcast systems,
including registration with servers in multiple regions

Integrated quality assur-
ance and testing

The client software will participate in the ShakeCast system’s com-
prehensive end-to-end testing procedures to provide high confidence
in proper system function during an earthquake. Broadcast data will
be checked for authenticity, correctness and completeness.

Automated notification The system will notify a list of people of earthquake-related events
via email, pager, and other mechanisms. Notification can be based
on shaking intensity (e.g., “peak ground acceleration at Mom’s
house greater than 0.3g”) using any of the shaking metrics of the
current or future ShakeMap system. Users can “sign up” for notifi-
cation via a Web page on their local ShakeCast system.

Personal web pages Provide local ShakeCast users the ability to view shaking data (in-
cluding maps, events, and alarms) on personalized web pages
served from their local ShakeCast server without each user needing
to access the main USGS ShakeMap systems.

Data version support Revise and re-issue notifications as new data arrives. Maintain
permanent record of the sequence of messages and notifications
issued.

Locations and thresh-
olds database

Maintain local list of locations of interest and notification thresholds.

External program inte-
gration

ShakeCast can trigger the execution of external programs for further
event and data processing.

Basic GIS tools Tools for working with GIS format ShakeMap data. Display your
own facilities and ShakeMap data in a Web-based map generated
locally on your receiver system.

ShakeCast System Specification

1-6 Gatekeeper Systems July 2004

locally on your receiver system.

Simple administration Web-based configuration and administration interfaces

High quality documenta-
tion

Professionally developed documentation and support materials

System Reliability Features

Feature Description

Support ShakeCast from
multiple servers

Protocol and tools will efficiently use multiple simultaneous broad-
cast servers. Each client can sign up with multiple servers on dif-
ferent networks to improve the likelihood of successful event notifi-
cation and data delivery. Clients will efficiently use multiple servers,
improving response-time for all ShakeCast users.

Cascading servers ShakeCast servers can be cascaded (a tree of servers) to improve
scalability and reliability. For example, a primary corporate server
can be configured to feed multiple internal ShakeCast client sys-
tems, or a central State server can be configured to feed depart-
mental servers in many departments or regions.

Integrated quality assur-
ance and testing

Client software will participate in frequent end-to-end system tests,
report errors to the local system administrator, and will log error
types to the ShakeCast developers to aid in designing future soft-
ware enhancements.

Comprehensive message
logging

An integrated and comprehensive message logging and analysis
system will aid the local system administrator in tracking system
performance.

Support for Application
Service Providers (ASPs)

The software will be suitable for customization by Application Serv-
ice Providers who want to add further value to the system. Shake-
Cast could also be used by large “portal” sites (e.g., AOL, Yahoo)
who want to provide their users with customized earthquake infor-
mation the same way they currently provide customized weather
information.

1.6 ShakeCast Software Development Plans
This document describes the capabilities of the ShakeCast Reference Implementation. The Ref-
erence Implementation is the most basic system that implements the core (required) features of
the ShakeCast design. The Reference System is freely available software, in the public domain.

However, it is hoped that some software developers will take the Reference System and extend
it, adding functions that their organization finds necessary or useful. The intent of the Shake-
Cast Project is to facilitate the development of such software extensions in an Open Source de-
velopment environment, so that everyone in the extended ShakeCast community can take ad-
vantage of each other’s efforts.

The sharing of new software is also facilitated by the use of XML (the Extensible Markup Lan-
guage) to express all ShakeCast metadata. All of the data exchanged in ShakeCast is described
and internally documented in XML. By making the ShakeCast data formats easily readable,

ShakeCast System Specification

July 2004 Gatekeeper Systems 1-7

public, and transparent, and by providing easy to use tools to define these data formats, the
ShakeCast project intends to promote the sharing of shaking data products and the tools that op-
erate on these data products.

1.7 ShakeCast Terms and Terminology
The terminology used in ShakeCast may differ slightly from that used in other information sys-
tems.

1.7.1 ShakeCast Server
A ShakeCast Server is a computer that is running the ShakeCast Server Software. The server
may or may not be acting as a server in the traditional sense: sending data downstream to an-
other ShakeCast Server or a ShakeCast Client. Instead, a server may be only receiving data
from another ShakeCast Server and making that data available on the web.

1.7.2 Upstream and Downstream
ShakeCast machines are more easily defined in terms of being upstream or downstream. An
upstream machine sends ShakeMap data to a downstream machine. The request to send the
data may originate on either machine.

1.7.3 Event
An event is a seismic event – an earthquake. All events have a globally unique and permanent
identifying number, called an event ID. The event ID is assigned by the seismic monitoring
systems, not by ShakeCast or ShakeMap. Once created, events may not be deleted, although
they may be marked as “canceled” to indicate that an event is anomalous and should no longer
be considered.

1.7.4 ShakeMap and ShakeMaps
ShakeMap is a software system for computing maps of shaking intensity. It uses data from
networks of seismometers and other sources to estimate shaking intensity as measured by a va-
riety of physical or instrumental metrics such as peak acceleration, velocity, spectral response,

Software Development Model

Feature Description

Open source develop-
ment

Use an open source development model. Encourage shared development
by external organizations so that ShakeCast improvements made by one
organization can be incorporated back into the product.

Web-based transport ShakeCast communication will be via HTTP/HTTPS.

XML-based metadata Self-describing data products so that new data types, data formats, and
sources can be added easily

Imbedded security and
authentication

All external communication include support for public key signatures and
manifests.

ShakeCast System Specification

1-8 Gatekeeper Systems July 2004

instrumental intensity, and so on. There are very few ShakeMap systems, all of them operated
by teams of seismologists and their professional support staff.

ShakeMap is also the name for the maps produced by the ShakeMap system.

1.7.5 Exchange
An exchange is when one ShakeCast server “talks to” another and sends information. An ex-
change can be as simple as “Hello, I’m still listening” or as complex as the transfer of a com-
plete set of GIS files for an event.

1.7.6 Product
A ShakeMap Product (or just Product) is a result of ShakeMap processing. When ShakeMap
processes a seismic event, it produces maps for many different metrics (i.e., peak acceleration,
velocity, etc.). Each of these maps may be produced in many different data formats (i.e., as a
grid of scalar values, as a GIS shapefile, as an image in JPEG format, as an image in PostScript
format, etc.).

Each combination of event, metric, and format is a different product.

1.7.7 Product Metric
A product metric (sometimes just called a metric) is a measure of shaking such as acceleration,
maximum velocity, and so on. Each metric for an event is provided by one or more different
ShakeMap products.

1.7.8 Facility
A facility is a location that is to be monitored by ShakeCast. A facility is typically a building,
bridge, highway, or similar man-made structure. The location of the facility must be known so
that ShakeCast can attribute various levels of shaking at that location, and the facility may have
associated fragility measures in one or more of the shaking metrics.

1.7.9 Fragility
Fragility is the measure of likely damage at a particular facility when a certain level of shaking
is exceeded, as measured in a particular metric (e.g., “peak acceleration at the period of one
second”).

1.7.10 Damage Level
There are classes of fragility associated with each facility in each metric. The damage level is
the class or category of shaking intensity experienced at a particular location. Damage levels
are typically assigned as “No damage expected”, “Some damage expected”, and “Damage
likely”, or “green”, “yellow”, and “red”. Damage levels are locally defined on each ShakeCast
Server, and different organizations may use different categories or a different number of catego-
ries.

ShakeCast System Specification

July 2004 Gatekeeper Systems 1-9

1.7.11 Notification
Notification is the process of electronically notifying a ShakeCast end user that a particular
damage level is estimated at a particular facility from a certain event. Notifications can be de-
livered in a variety of electronic forms, including as an email message or an electronic pager
message.

1.8 ShakeCast Network Topology
ShakeCast is may be visualized as a network of interconnected computer systems. The basic
structure of the ShakeCast network is shown in the following figure.

Sensor
Network

Web Client

Sensor Collection
System

WAN
Connection

ShakeMap
System

USGS
ShakeCast Server

 USGS
ShakeCast Server

ShakeCast ClientShakeCast Client

Email Client

Web Clients

l
l

Email Clients

Internet

ShakeCast Client

Web Clients

l
l

Email Clients

Network of ShakeMap
Servers and Clients

Private Network
Connection

ShakeMap
System

QuakeWatch
System

ShakeCast servers can be configured to receive unsolicited input of ShakeCast events and prod-
ucts. They may also be configured to periodically poll upstream ShakeCast servers for infor-
mation. An example configuration showing how servers might be configured for both polling
and “push” is shown in the following figure. The figure shows how some servers might be con-
figured to poll for data, some to receive a push of data, and some configured for both. The fig-
ure also shows how some servers can be configured to receive data via two or three paths, pro-

ShakeCast System Specification

1-10 Gatekeeper Systems July 2004

viding increased protection against failure of upstream servers or of the network connection to
those servers.

Sensor
Network

Web Client

Sensor Collection
System

WAN
Connection

NoCal ShakeMap
System

USGS
ShakeCast Server

USGS

ShakeCast Server

CalTrans Departmental
ShakeCast Server

CalTrans Divisional
ShakeCast Server

Poll

Push

Email Client

Web Clients

l
l

Email Clients

Poll

State of California
ShakeCast Server

Web Clients

l
l

Email Clients

Push

Example ShakeMap
Request and Polling

Configuration

Private Network
Connection

SoCal ShakeMap
System

Push

Poll

ShakeCast System Specification

July 2004 Gatekeeper Systems 2-1

Chapter 2 ShakeCast Request Format and Parameters

ShakeCast exchanges information between two computers in the form of “requests”. This
Chapter of the ShakeCast Specification describes the use, format, and parameters of these re-
quests.

2.1 Introduction to ShakeCast Requests
ShakeCast Requests are simple “messages” exchanged using the HTTP protocol (the protocol
that powers the World Wide Web). The requests have the following characteristics that make
them a convenient mechanism for exchanging information in a system for communicating criti-
cal data about earthquakes:

• It is relatively easy to build software that uses HTTP. There are a great many tools, soft-
ware libraries, and other software resources available for using HTTP.

• HTTP is well understood and easily managed by network administrators who are responsi-
ble for network security.

• The ShakeCast requests are always idempotent. That is, a ShakeCast request can be re-
peated, and repeated requests will have the same effect as the first request. This property is
very important in situations where multiple computers are simultaneously communicating
critical emergency information to many other computers, and the sequence of multiple re-
quests cannot be assured or determined in advance.

• ShakeCast requests always contain information to ensure the integrity of the message. The
HTTP protocol is designed so that applications can be assured that HTTP messages are not
damaged in transmission. ShakeCast extends this assurance by identifying the parties in a
message, by exchanging metadata (“data about data”) that describes the message contents,
and by sending extra information the receiver can use to easily verify that the message was
received without being somehow damaged or truncated.

The following sections of this Chapter describe ShakeCast Requests.

2.2 The ShakeCast Request Format
All ShakeCast Requests are actually ordinary World Wide Web requests. Specifically, Shake-
Cast Requests are HTTP Gets, HTTP Posts, or HTTP File Upload requests. Generally, these

ShakeCast System Specification

2-2 Gatekeeper Systems July 2004

requests are satisfied by CGI (Common Gateway Interface) programs that run on the server that
receives the request. The requests have the following general characteristics.

ShakeCast requests are all associated with a particular URL path (or directory). The requests are
therefore prefixed with the /sc URL path. For example, a request to the ShakeCast heartbeat
request on the ShakeCast Server named mercator.gatekeeper.com would be accessed as:

“http://mercator.gatekeeper.com/sc/heartbeat”

A request for the Event XML for event number 12345 might use the URL:

“http://mercator.gatekeeper.com/sc/xml/event/12345.xml”

The above request might be answered by the Web Server, or by a script, depending on the con-
figuration of your ShakeCast server.

2.2.1 Request Parameters
Some ShakeCast Requests pass parameters. These parameters are generally used by the re-
ceiving server to construct query predicates that limit the results returned. ShakeCast Request
Parameters are passed as ordinary HTTP request parameters.

2.2.2 HTTP Headers
ShakeCast servers communicate via the HTTP protocol. All requests that are properly proc-
essed by the ShakeCast software will return an HTTP Version 1.1 status header that indicates
success:

HTTP/1.1 200 OK

An HTTP status of anything other than “200 Success” indicates that there is something wrong
with the ShakeCast software, the software environment on either the upstream or downstream
server, or the network (such as a problem with an intervening HTTP Proxy Server).

2.2.3 ShakeCast Status XML
ShakeCast processors also return a HTTP payload to represent the status of the request proc-
essing. The payload is in the form of an XML message. This message is described in more
detail in Chapter 5, XML Documents.

[more tbs]

2.2.4 XML URLs in ShakeCast Requests
Many ShakeCast requests pass information that the receiving server can use to obtain more in-
formation. This information is passed in the form of callback addresses, or callback URLs, that
provide an address where further information may be retrieved in the form of an XML message.

For example, the new_event request optionally passes the receiving server a URL. This URL
is the full address of an XML message that fully describes the event. When a ShakeCast server
is notified of a new event with the new_event request, the server then takes value of the
event_XML parameter and uses it to request additional information about the event.

ShakeCast System Specification

July 2004 Gatekeeper Systems 2-3

An XML URL in the ShakeCast system is always a fully-formed URL. It must include a proto-
col (e.g., http, https, or ftp), server address (either as DNS or IP), and the entire path to the
passed object. Note that the passed URL does not have to be on the same server that responded
to the request. However, the downstream server may not be able to access the address provided
unless the address is on a server known to the downstream server and the server at the given ad-
dress will honor that request with respect to access controls or other network configuration is-
sues.

Also, note that the provided URL may be either a file or a script that dynamically generates the
XML message. Since returning files is often less resource intensive than running a script to
generate XML out of the ShakeCast database, the ShakeCast server often will generate a file,
store that file in the server’s filesystem, and then pass the address of that file as the XML URL.

2.2.5 Other Returned Data in ShakeCast Requests
[tbs]

2.3 ShakeCast Request Parameter Formats
The ShakeCast system exchanges data as HTTP request parameters. These parameters include
simple items such as unique identifiers and server names, but may also include more complex
datatypes such as dates, latitudes and longitudes. These parameters are always expressed as text
strings, but the format of these strings is limited to the formats described in the following para-
graphs.

2.3.1 Time Usage and Date and Time Formats
Dates and times in ShakeCast parameters and XML files are always defined in the following
format:

yyyy-mm-dd:hh:mm:ss.hhZ

where the values of the symbols in the format are defined in the following table.

Date and Time Formats

Item Description

yyyy Four digit year

mm Two digit month, leading zeros required

dd Two digit day-of-month, leading zeros required

hh Two digit hour, leading zeros required

mm Two digit minutes, leading zeros required

ss Two digit seconds, leading zeros required

hh Two digit hundredths of seconds.

Z Indicates that the time is “Zulu” (Greenwich Mean Time, or GMT).

ShakeCast System Specification

2-4 Gatekeeper Systems July 2004

The entire year-month-day is always required in a ShakeCast date and time. If a time is pro-
vided, the entire time string must be provided. Zero-fill the time if necessary. If a time is not
provided, do not include the colon following the day column, nor the trailing “Z”.

Dates and times in ShakeCast are always in Universal Time Coordinates (UTC), also known as
Greenwich Mean Time (GMT). Daylight saving adjustments are never applied directly to the
time, but are instead shown as offsets from GMT.

All ShakeCast machines must be synchronized with the US National Time Standard using the
Network Time Protocol (NTP). Under normal conditions, the time skew between any two
ShakeCast machines will be no more than a few hundredths of a second. When a ShakeCast
server responds to a request that includes time as a query predicate, the processing server will
“fudge” the time backward. This will guarantee that even if there is clock skew between the
two servers, the request will find records been written since the time given. The amount of
“fudging” is specified in the ShakeCast server configuration file, and defaults to 0.5 seconds.

2.3.2 Latitude, Longitude, and Bounding Boxes
Latitudes and longitudes in ShakeCast are always represented as decimal degrees. West longi-
tudes are negative. South latitudes are negative.

A point location is represented using a latitude and longitude expressed as the latitude value
followed by a colon followed by the longitude value. There should be no spaces or other char-
acters in the latitude/longitude string. For example:

34.147689:-118.128808

A spatial bounding box is represented using two latitude/longitude pairs separated by a two co-
lons. Again,, no spaces or other characters are allowed. For example:

34.147689:-118.128808::34.335439:-118.506447

2.3.3 Server IDs and Server Names
ShakeCast Server IDs are globally unique and assigned by a root ShakeCast Server. These
Server IDs are configured into the ShakeCast system at the time that a ShakeCast system is in-
stalled. The Server ID is retrieved automatically during the installation process using a simple
HTTP request. Note that it is therefore required that a ShakeCast system have network access
at the time that the software is installed.

[tbs]

2.4 Upstream and Downstream ShakeCast Machines
As in many other information transfer protocols, ShakeCast messages involve both a “server”
and a “client”. However, a single ShakeCast computer is often both a server and a client.
Therefore, instead of labeling a ShakeCast system as either server or client, it is convenient to
think of ShakeCast requests as moving data from an upstream machine to a downstream ma-
chine.

A downstream ShakeCast server may request information from an upstream server: these are
“upstream requests”. Alternately, an upstream ShakeCast server may send information, unso-
licited, to a downstream machine: these are “downstream requests”.

ShakeCast System Specification

July 2004 Gatekeeper Systems 2-5

[more tbs]

2.5 Security and Authentication
[tbs]

2.5.1 Introduction to Security and Authentication
[tbs]

2.5.2 Authorized ShakeCast Servers
A ShakeCast server will allow communication only with other servers that are known to it. A
server is “known” if it is defined in the SERVER table of the ShakeCast database. Servers in
the ShakeCast database are further defined as “upstream”, “downstream”, or both, and the
ShakeCast server may restrict communications based on the type of server.

Servers are defined in the SERVER table in three ways:

• When you initially install a ShakeCast server, you provide information to identify an up-
stream ShakeCast server that will deliver shaking data to your new server. The ShakeCast
installation automatically registers your server with the upstream server, and enters the up-
stream server in your system’s SERVER table.

• A ShakeCast administrator can add to the SERVER table manually, or access a ShakeCast
web page that creates and registers a new server.

• Another ShakeCast server can request access to your server. Such a request results in an
email notification to the ShakeCast system administrator, and the administrator can later use
a URL provided in that link to define the new server in the SERVER table and grant the
right to communicate with that server.

2.5.3 ShakeCast Server Logins
ShakeCast servers communicate with one another by logging in to the Web server. The login
username is the ShakeCast Server ID. The login password is given in the PASSWORD column
of the SERVER table for the table row that has the target server’s Server ID. That is, the
password in the Server Table on the local database is always the password used when logging in
to the remote server.

2.5.4 Secure Communications
ShakeCast uses standard HTTP requests for all communication with other servers, and standard
SMTP requests for all email and pager notification. In both cases, your network administrator
can provide a higher level of security for these communication protocols.

HTTP requests that require higher security can use HTTP over Secure Sockets Layer, SSL.
[more TBS]

Email notification in ShakeCast uses MIME (Multipart Internet Mail Extensions) to encode
messages. If you require a higher level of security for your email notification, you can substi-
tute Secure MIME (S/MIME) to encrypt these messages. [more tbs]

ShakeCast System Specification

2-6 Gatekeeper Systems July 2004

2.5.5 ShakeCast use of Public Key Infrastructure
[tbs]

2.5.6 ShakeCast Use of IP Addresses and DNS
ShakeCast servers can be configured in the ShakeCast database using either Domain Name
System (DNS) addresses (readable names, like shakecast.usgs.gov) or Internet Protocol ad-
dresses (numeric addresses, like 10.2.3.4). Most Internet software systems tolerate both name
formats, but system administrators tend to use only the DNS form of addresses because these
are easier to maintain and can be changed by the target (named) system administrator without
notifying all the systems that might communicate with that system.

However, the DNS system depends on the operation of a large number of systems on the Inter-
net, and in the event of an earthquake the DNS system may not be stable, reliable, or respon-
sive. Therefore, ShakeCast uses DNS but is designed to tolerate the failure of DNS.

When ShakeCast servers are identified by a DNS name, ShakeCast requests all use the DNS
name instead of the IP address. In addition, ShakeCast requests will translate the DNS name
and store the translated IP address in the ShakeCast database. Subsequently, if a ShakeCast re-
quest fails to obtain a DNS translation, then ShakeCast retries the request using the previously-
stored IP address. In this way, the ShakeCast system provides insulation from transient failures
in the DNS system.

All ShakeCast requests follow the above protocol. Most importantly, the heartbeat request
runs periodically, and will store in the ShakeCast database the IP address that was used in the
request.

ShakeCast System Specification

July 2004 Gatekeeper Systems 3-1

Chapter 3 ShakeCast Requests

The following paragraphs document the available ShakeCast requests, together with their be-
havior, required and optional arguments, returned status values, and returned data.

ShakeCast System Specification

3-2 Gatekeeper Systems July 2004

Request get_event_list
Summary Request a list of events that meet a given set of criteria.

Required
Parameters

none

Optional
Parameters

begin_time=<ts>: limit the response to events that have occurred since ts

record_time=<ts>: limit the response to events that have been recorded in the up-
stream server since ts

loc_bb=<bb>: limit the response to events that have a event point location within
the bounding box specified by bb (see Section 2.3.2 Latitude, Longitude, and
Bounding Boxes for more information on formatting bounding box predicates)

extent_bb=<bb>: limit the response to events that have an event extent that
crosses the bounding box specified by bb (see Section 2.3.2 Latitude, Longitude,
and Bounding Boxes for more information on formatting bounding box predicates)

no_metadata=true: if specified, the request returns XML with only event numbers.
If this parameter is false or is not specified, the request returns XML with both the
event numbers and all known event metadata.

Returned
XML

ShakeCast Status XML: status of the request response

Server Status XML: status of the responding server (optional)

Event XML: An Event XML message containing zero or more events

Description The get_event_list request retrieves a list of events from an upstream server.
You may specify any or all of the optional parameters as arguments to the request.
If specified, those parameters (query predicates) qualify the request to potentially
reduce the list of returned events.

The list of query predicates may be null, which is equivalent to a request for all
events known by the upstream server. Such a request may be used to initialize an
empty event database.

The result returned in the payload of the HTTP get includes an XML file that con-
tains the definitions of one or more events. If the no_metadata parameter is
specified, the file contains XML that specifies only the event_ids that match your
request. If the no_metadata parameter is not specified, the file also contains
event metadata such as event time, the server ID of the originating ShakeCast
server for this event, and so on. (See Section 5.2, Event XML in Chapter 5 for
more information on the metadata defined for ShakeCast Events.)

Note that if your ShakeCast Server communicates with multiple upstream servers,
there is no guarantee that all the servers will know about all events, or about the
order of notification from those servers, or about the coherency of the data from
those servers. Note also that you may obtain different answers if you issue the
same query multiple times, as the event database on the upstream server may be
updated in the intervening time between your requests. Therefore, if you want to
be sure that you have obtained a complete list of events known to the upstream
server, you should use the record_ts parameter and specify the timestamp of
the last event you received from that server, or the server’s birth timestamp,
whichever is earlier.

The Event XML file is empty if the query predicates, when applied to the EVENT
table in the ShakeCast database on the upstream server, result in zero events that
match the criteria given.

ShakeCast System Specification

July 2004 Gatekeeper Systems 3-3

match the criteria given.

The begin_time predicate is applied using a greater-than-or-equal Boolean ex-
pression.

The bounding box predicates are applied using an SQL BETWEEN predicate,
which is greater-than-or-equal for the lower bound and less-than-or-equal for the
upper bound, on each of the latitude and longitude axes.

Example http://target-server/sc/request/get_event_list?
record_time= 2003-01-7:22:12:34.56;
extent_bb=34.147689:-118.128808::34.335439:-118.506447

Requesting
Server Ac-
tions

If request succeeds, parse the ShakeCast Status XML for status information. Up-
date the target server’s LAST_HEARD_FROM timestamp and IP address, and
zero the error count for that server. Log the request and status in the Exchange
Log.

Check to see if this event is new (not yet known). If it is new, create an EVENT
record in the ShakeCast database.

Optionally record the event information from the optional request parameters in the
EVENT record.

If the event type indicates this is a ShakeCast Test Event, follow the test protocol
described in Section 10.4, 10.4Processing Standard Test Messages.

The downstream server may decide whether to pursue further processing based
on the information in the Event XML.. Based on the contents of the Event XML,
the server may optionally perform event processing steps described in Chapter 8,
Exchange Processing, or Chapter 7, Notification Processing, and may also re-
quest product information about the event using the get_product request.

If the get_event_list request fails, increment the error counter for the re-
questing server.

Responding
Server Ac-
tions

Use the provided query arguments as predicates in a query against the local
server’s EVENT table in the ShakeCast Database. Return the event_ids of the
events that match those predicates. Form these event ids into an Event XML file.
If the user did not specify the no_metadata parameter in the request, also re-
trieve all available data on the event and create and return a fully-populated event
XML record for each event.

Update the requesting server’s LAST_HEARD_FROM timestamp and reset the
error counter for that server.

Log the request in the Exchange Log.

ShakeCast System Specification

3-4 Gatekeeper Systems July 2004

Request get_metadata_list
Summary Request system metadata that is known to the upstream server.

Required
Parameters

table_name =<name>: The name of a ShakeCast Database table

Optional
Parameters

no_metadata=true: If specified, the server will return just the identifiers of the da-
tabase rows (primary key values), not the data rows themselves. A downstream
server can use this to verify that it is up-to-date without actually applying any
metadata changes.

Returned
XML

ShakeCast Status XML: status of the request response

Server Status XML: status of the responding server (optional)

Metadata XML: A Metadata XML message containing the metadata for zero or
more rows in the requested database table.

Description The get_metadata_list request retrieves a list of known ShakeCast Database
metadata from an upstream server. There are no query predicates.

The result returned in the payload of the HTTP get is an XML file that contains
zero or more rows of metadata from the upstream server. See the Section 5.7,
ShakeCast Metadata XML in Chapter 5 for more information on how the XML file
is formed.

Note that if your ShakeCast Server communicates with multiple upstream servers,
there is no guarantee that all the servers will have knowledge of all the metadata
in the global ShakeCast network.

Example http://target-server/sc/request/get_metadata_list?table_name=METRIC

Requesting
Server Ac-
tions

If the request succeeds, parse the ShakeCast Status XML for status information.
Update the target server’s LAST_HEARD_FROM timestamp and IP address, and
zero the error count for that server. Log the request and status in the Exchange
Log.

Parse the Metadata XML file. If no_metadata=true was specified, just compare
the list of metadata Primary Keys with those found in the corresponding table in
the local database. If new keys are found, the local server may make further re-
quests to get the metadata, or it may log a notification with the local System Ad-
ministrator. If no_metadata is not specified or false, compare the metadata re-
trieved with the metadata rows in the corresponding table in the local database,
and update the local database to match. See Section 8.3, Metadata Exchanges for
more information on updating local ShakeCast metadata.

Check to see if this shaking metric is new (not yet known). If it is new, create a
METRIC record in the ShakeCast database. Use the metadata describing the
shaking metric from the metric_XML. Enter the metadata in the METRIC record
in the local ShakeCast database.

If the get_metadata_list request fails, increment the error counter for the re-
questing server.

Responding
Server Ac-
tions

Update the requesting server’s LAST_HEARD_FROM timestamp.

Log the request in the Exchange Log.

ShakeCast System Specification

July 2004 Gatekeeper Systems 3-5

Request get_product_list
Summary Request a list of products that meet a particular set of criteria.

Required
Parameters

None

Optional
Parameters

event_id=<eid>: limit the response to products that are associated with the fol-
lowing comma-separated list of one or more events

record_time=<ts>: limit the response to products that have been created since the
time specified by ts

product_type=<type>: limit the response to products that match the types given.
Specify multiple types as a comma-separated list.

no_metadata=true: if specified, the request returns XML with only product ID
numbers. If this parameter is not specified, the request returns XML with both the
product ID numbers and all known product metadata.

Returned
XML

ShakeCast Status XML: status of the request response

Server Status XML: status of the responding server (optional)

Product XML: A Product XML message containing zero or more events

ShakeMap XML: A ShakeMap XML message that contains zero or more Shake-
Map XML messages for the ShakeMaps that are associated with the Products re-
turned

Description The get_product_list request retrieves a list of products from an upstream
server. You may specify any or all of the optional parameters as arguments to the
request. If specified, those parameters (query predicates) qualify the request to
potentially reduce the list of returned products. If multiple predicates are present
in the argument list, the predicates event and record_time are logically ORed,
so products matching any of the predicates will be returned. The product_type
predicate is

The result returned in the payload of the HTTP get is an XML file that contains the
definitions of one or more products. If the no_metadata parameter is specified, the
file contains XML that specifies only the product_ids that match your request. If
the no_metadata parameter is not specified, the file also contains product meta-
data such as product creation time, the version number of this product, and so on.
(See Section Error! Reference source not found., Error! Reference source not
found. in Chapter 5 for more information on the metadata available for products.)

Note that if your ShakeCast Server communicates with multiple upstream servers,
there is no guarantee that all the servers will have the same products.

The begin_time predicate is applied using a greater-than-or-equal Boolean ex-
pression.

Example http://target-server/sc/request/new_server?server=1234;
server_xml=http://myself.mycompany.com/sc/xml/server/4567.xml

Requesting
Server Ac-
tions

If the request succeeds, parse the ShakeCast Status XML for status information.
Update the target server’s LAST_HEARD_FROM timestamp and IP address, and
zero the error count for that server. Log the request and status in the Exchange
Log.

If the get_product_list request fails, increment the error counter for the re-
questing server.

ShakeCast System Specification

3-6 Gatekeeper Systems July 2004

questing server.

Responding
Server Ac-
tions

Update the requesting server’s LAST_HEARD_FROM timestamp.

Check to see if this server is new (not yet known). If it is new, create a SERVER
record in the ShakeCast database.

Optionally, retrieve the metadata describing the product type from the prod-
uct_XML. Enter the metadata in the PRODUCT record.

A new server may not be activated by simply receiving a new_server request.
After the server metadata is entered in the ShakeCast database, the receiving
server will notify the local system administrator of the presence of the new server
using the notification methods described in Chapter 7, Notification Processing.
That notification request provides a URL for the system administrator to run a
script which will authorize or enable the new server record for use.

Log the request in the Exchange Log.

ShakeCast System Specification

July 2004 Gatekeeper Systems 3-7

Request get_server_list
Summary Request a list of ShakeCast servers that meet a particular set of criteria.

Required
Parameters

None

Optional
Parameters

update_time=ts: return only servers that have had their server record updated
since ts

[tbs] how to get peers? How to get others who will service me?

Returned
XML

ShakeCast Status XML: status of the request response

Server Status XML: status of the responding server (optional)

Server XML: An Server XML message containing the metadata for zero or more
servers

Description The get_server_list request retrieves a list of known ShakeCast servers from
an upstream server. You may specify any or all of the optional parameters as ar-
guments to the request. If specified, those parameters (query predicates) qualify
the request to potentially reduce the list of returned servers.

The result returned in the payload of the HTTP get is an XML file that contains the
definitions of one or more servers. If the no_metadata parameter is specified, the
file contains XML that specifies only the server_ids that match your request. If the
no_metadata parameter is not specified, the file also contains server metadata
such as server birth time, the status of the server, and so on. (See the Server
XML in Chapter 5 for more information on the metadata available for servers.)

Note that if your ShakeCast Server communicates with multiple upstream servers,
there is no guarantee that all the servers will have knowledge of all the servers in
the global ShakeCast network.

Example http://target-server/sc/request/get_server_list?[tbs]

Requesting
Server Ac-
tions

If the request succeeds, parse the ShakeCast Status XML for status information.
Update the target server’s LAST_HEARD_FROM timestamp and IP address, and
zero the error count for that server. Log the request and status in the Exchange
Log.

If the get_server_list request fails, increment the error counter for the up-
stream server.

Check to see if this server is new (not yet known). If it is new, create a SERVER
record in the ShakeCast database.

Optionally, retrieve the metadata describing the product type from the
server_XML. Enter the metadata in the SERVER record.

A new server is not activated by simply receiving a get_server_list request.
After the server metadata is entered in the ShakeCast database, the receiving
server will notify the local system administrator of the presence of the new server
using the notification methods described in Chapter 7, Notification Processing.
That notification request provides a URL for the system administrator to run a
script which will authorize or enable the new server record for use.

ShakeCast System Specification

3-8 Gatekeeper Systems July 2004

Responding
Server Ac-
tions

Update the requesting server’s LAST_HEARD_FROM timestamp.

Log the request in the Exchange Log.

ShakeCast System Specification

July 2004 Gatekeeper Systems 3-9

Request heartbeat
Summary Test a ShakeCast connection and report the presence of the sending server to the re-

ceiving server.

Required
Parameters

server_id=<sid>: the assigned server id of the requesting (initiating) server

uptime=<delta-time>: the number of seconds the requesting server has been up con-
tinuously

system_generation=<generation>: the number of times the requesting ShakeCast server
has restarted since original installation

error_count=<count>: the number of times any message between these two servers
(heartbeat or other message type) has failed since the last success

software_version=<version-string>: the version number of the ShakeCast software being
run on the requesting server

Optional
Parameters

record_time=<ts>: <ts> is a full date and time in the ShakeCast time format

system_xml=<URL>: <URL> will respond to HTTP Get requests with Server Status XML
about the requesting server (the one generating the heartbeat request, not the server
responding to the heartbeat request)

Returned
XML

ShakeCast Status XML: a standard XML message containing status information

ShakeCast Server Status XML: an XML message describing the status of the responding
server

Description The heartbeat request notifies receiver of the presence of the sender. It also allows the
sender and receiver to verify that most of the ShakeCast software, network and hardware
infrastructure is operating normally.

Nominally, the error_count parameter will be zero, indicating that the requesting server
has not failed to obtain heartbeat. A non-zero error_count indicates that the communica-
tion network between the two servers is not stable.

When a sender makes a heartbeat request, it may optionally include a timestamp pa-
rameter. The receiver may use this timestamp to verify that the clocks of the sender and
receiver are synchronized.

Example http://target-server/sc/request/heartbeat?server_id=1234;uptime=86401; sys-
tem_generation=123;error_count=0;software_version=V1.0.0

Requesting
Server Ac-
tions

If request succeeds, parse the ShakeCast Status XML for status information. Update the
target server’s LAST_HEARD_FROM timestamp and IP address, and zero the error
count for that server. Log the request and status in the Exchange Log.

If the request fails, increment the error counter for the requesting server.

Responding
Server Ac-
tions

Update the requesting server’s LAST_HEARD_FROM timestamp.

Optionally record the uptime, system generation, error count, and software version data
in the requesting server’s record in the SERVER table of the ShakeCast database.

Log the request in the Exchange Log.

ShakeCast System Specification

3-10 Gatekeeper Systems July 2004

Request new_event
Summary Notify a server of a new ShakeCast event.

Required
Parameters

None

Optional
Parameters

None

Posted XML Event XML

Returned
XML

ShakeCast Status XML: status of the request response

Server Status XML: status of the responding server (optional)

Description The new_event request notifies a ShakeCast server of a new ShakeMap seismic event.
The receiver will process the Event XML to examine the parameters of the event. The
receiver may then ignore the event, or the receiver may enter the event in its database.

Example http://target-server/sc/request/new_event

Requesting
Server Ac-
tions

If request succeeds, parse the ShakeCast Status XML for status information. Update the
target server’s LAST_HEARD_FROM timestamp and IP address, and zero the error
count for that server. Log the request and status in the Exchange Log.

If the request fails, increment the error counter for the requesting server.

Responding
Server Ac-
tions

Update the requesting server’s LAST_HEARD_FROM timestamp.

Process the Event XML. Check to see if this event is new (not yet known). If it is new,
create an EVENT record in the ShakeCast database.

If the event type indicates this is a ShakeCast Test Event, follow the test protocol de-
scribed in Section 10.4, Processing Standard Test Messages.

The downstream server may decide whether to pursue further processing based on the
information in the event XML. Based on the contents of that XML message, the server
may optionally perform event processing steps described in Chapter 8, Exchange Proc-
essing, or Chapter 7, Notification Processing.

Log the request in the Exchange Log.

ShakeCast System Specification

July 2004 Gatekeeper Systems 3-11

Request new_metadata
Summary Notify a server of new or changed ShakeCast metadata.

Required
Parameters

None

Optional
Parameters

None

Posted XML Metadata XML: information to update the ShakeCast database

Returned
XML

ShakeCast Status XML: status of the request response

Server Status XML: status of the responding server (optional)

Description The new_metadata request notifies a ShakeCast server of new or updated ShakeMap
metadata. The notice may be ignored by the receiver, or the receiver may enter the
metadata in its database. Generally, the receiver will enter the metadata update into the
ShakeCast database and then issue an HTTP get request to the metadata_url URL to
retrieve the XML file.

Example http://target-server/sc/request/new_metadata

Requesting
Server Ac-
tions

If request succeeds, parse the ShakeCast Status XML for status information. Update the
target server’s LAST_HEARD_FROM timestamp and IP address, and zero the error
count for that server. Log the request and status in the Exchange Log.

If the request fails, increment the error counter for the requesting server.

Responding
Server Ac-
tions

Update the requesting server’s LAST_HEARD_FROM timestamp.

Retrieve and process the Metadata XML file, as described in Section 8.3, Metadata Ex-
changes.

Log the request in the Exchange Log.

ShakeCast System Specification

3-12 Gatekeeper Systems July 2004

Request new_product
Summary Notify a server of a new ShakeCast product.

Required
Parameters

None

Optional
Parameters

None

Posted XML Product XML: information about one or more new ShakeCast Products available

Returned
XML

ShakeCast Status XML: status of the request response

Server Status XML: status of the responding server (optional)

Description The new_product request notifies a ShakeCast server of a new ShakeMap prod-
uct. The notice may be ignored by the receiver, or the receiver may enter the
product in its database. Generally, the receiver will enter the product definition
into the ShakeCast database and then issue an HTTP get request to the prod-
uct_xml to retrieve the product XML file and/or issue an HTTP get request to the
product_url to get the actual product file itself.

Example http://target-server/sc/request/new_product

Requesting
Server Ac-
tions

If request succeeds, parse the ShakeCast Status XML for status information. Up-
date the target server’s LAST_HEARD_FROM timestamp and IP address, and
zero the error count for that server. Log the request and status in the Exchange
Log.

If the request fails, increment the error counter for the requesting server.

Responding
Server Ac-
tions

Update the requesting server’s LAST_HEARD_FROM timestamp.

Parse the Product XML message. Check to see if this product is new (not yet
known). If it is new, create a PRODUCT record in the ShakeCast database. Op-
tionally record the product information from the optional request parameters in the
PRODUCT record.

Check to see if this ShakeMap is new (not yet known). If it is new, create a
SHAKEMAP record in the ShakeCast database.

Optionally, retrieve the metadata describing the product from the product_XML.
Enter the metadata in the PRODUCT record and other records in the ShakeCast
Database.

Optionally, retrieve the product file itself from the product_URL. Compare the
size of the file (in bytes) and the MD5 hash with the parameters provided in the
original request or in the product XML message.

Log the request in the Exchange Log.

ShakeCast System Specification

July 2004 Gatekeeper Systems 3-13

Request new_server
Summary Notify a server of a new ShakeCast server.

Required
Parameters

None

Optional
Parameters

None

Posted XML Server XML: information about the new ShakeCast Server

Returned
XML

ShakeCast Status XML: status of the request response

Server Status XML: status of the responding server (optional)

Description The new_server request notifies a ShakeCast server of a new ShakeMap server
that has become known to the upstream server. The notice may be ignored by the
receiver, or the receiver may enter the new server record in its database. Gener-
ally, the receiver will enter the server definition into the ShakeCast database and
then issue an HTTP get request to the server_xml to retrieve the server XML file
and store the parameters found there in the SERVER table.

Example http://target-server/sc/request/new_server

Requesting
Server Ac-
tions

If the request succeeds, parse the ShakeCast Status XML for status information.
Update the target server’s LAST_HEARD_FROM timestamp and IP address, and
zero the error count for that server. Log the request and status in the Exchange
Log.

If the new_server request fails, increment the error counter for the requesting
server.

Responding
Server Ac-
tions

Update the requesting server’s LAST_HEARD_FROM timestamp.

Check to see if this server is new (not yet known). If it is new, create a SERVER
record in the ShakeCast database.

Optionally, retrieve the metadata describing the product type from the
server_XML. Enter the metadata in the SERVER record.

A new server may not be activated by simply receiving a new_server request.
After the server metadata is entered in the ShakeCast database, the receiving
server will notify the local system administrator of the presence of the new server
using the notification methods described in Chapter 7, Notification Processing.
That notification request provides a URL for the system administrator to run a
script which will authorize or enable the new server record for use.

Log the request in the Exchange Log.

ShakeCast System Specification

3-14 Gatekeeper Systems July 2004

Request register
Summary Register a ShakeCast server with an upstream server.

Required
Parameters

name=<fully qualified host name>: a text string in the form of a fully quality host
name (host name plus domain name)

Optional
Parameters

None

Posted XML Server XML: information about the server to be registered

Returned
XML

ShakeCast Status XML: status of the request response

Server Status XML: status of the responding server (optional)

Server XML: An Server XML message containing the server ID of the newly reg-
istered server.

Description The register request informs an upstream server about the presence of a
downstream server. The upstream server will respond by computing a new glob-
ally unique Server ID and inserting a record for this server into the SERVER table
of the upstream server’s ShakeCast Database. [TBS – how to compute a global
unique ID]

Hosts must be named uniquely. The best way to do this is to use a host name
qualified by your organization’s DNS domain name. For example, if your organi-
zation is the Western Region of the United States Geological Survey, you might
name your server as shakecast1.wr.usgs.gov. Your ShakeCast server name does
not need to match a particular machine name. For example, the ShakeCast
server named above might run on a machine called server23.wr.usgs.gov or
mars.caltech.edu.

Tthe upstream server will parse the posted ShakeCast Server XML file. The pa-
rameters found in that XML file will be added to the newly created record in the
SERVER table, except that the Server ID may not be overwritten with values from
the XML.

The SERVER XML with the Server ID completed is then returned as the payload
of the HTTP Get.

Example http://target-server/sc/request/register?name=roll.gatekeeper.com

Requesting
Server Ac-
tions

If the request succeeds, parse the ShakeCast Status XML for status information.
Update the target server’s LAST_HEARD_FROM timestamp and IP address, and
zero the error count for that server. Log the request and status in the Exchange
Log.

If the register request fails, increment the error counter for the requesting
server.

Responding
Server Ac-
tions

Update the requesting server’s LAST_HEARD_FROM timestamp.

Log the request in the Exchange Log.

[tbs – register the server]

ShakeCast System Specification

July 2004 Gatekeeper Systems 4-1

Chapter 4 ShakeCast Interactions

ShakeCast messages may be sent one-at-a-time, or in combination. A number of combinations
of requests are commonly used, and we term these “ShakeCast Interactions”. This Section of
the ShakeCast Specification documents these Interactions.

4.1 Poll and Request Interactions
In Poll and Request Interactions, a downstream ShakeCast Server periodically checks for new
data on an upstream server. When the upstream server has no data available, the downstream
server waits and tries again. If the upstream server has data, the downstream server requests
additional objects.

4.1.1 Poll for Event and Get Resulting Products
In this interaction, a downstream server polls one or more upstream servers for new events. If a
new event is returned, the get_event_list request also returns Event XML with the details of
each event. This interaction is used by a downstream server that cannot receive a “push” of new
events and event data from an upstream server.

Poll for Event and Get Resulting Products

Request Description

get_event_list?
begin_time=<timestamp>;
no_metadata=false

Request a list of new events since the last poll time. Return the
event metadata in the body of the response. Update the local
database with the list of new events and with the metadata
about each event.

get_product_list?eid=<event_id> Request a list of products available for this event. The product
metadata is returned in the request. Included in the metadata is
the URL of each product file. Loop over each event returned in
the previous request.

HTTP get Loop over each product for each event to get the actual product
files.

Notification Loop After all products have been received, loop through the data-
base looking for notifications to be queued (see Chapter 7).

ShakeCast System Specification

4-2 Gatekeeper Systems July 2004

4.1.2 Poll for Product Update
If a server has recently processed ShakeCast products, it may periodically poll all upstream
servers to check if any of those products have been updated or any new products added. Even if
there is not a new event, new products may be created or existing products may be updated.

Poll for All Product Updates Get Resulting Products

Request Description

get_product_list?
record_time=<timestamp>;
no_metadata=false

Request a list of new products since the last poll time. Return the
product metadata in the body of the response. Update the local data-
base with the metadata returned.

HTTP get Loop to get each product file.

Notification Loop After all products have been received, loop through the database look-
ing for notifications to be queued (see Chapter 7).

Alternately, the server may search for only those products on events that have occurred in some
small recent time window. To do this, the server would build a list of events that have recently
occurred or been updated, and then search for new products only on those recent events.

Poll for Product Updates on Recent Events and Get Resulting Products

Request Description

get_event_list?
begin_time=<timestamp>;
no_metadata=false

Request a list of new events since the last poll time. Return the event
metadata in the body of the response. Update the local database with
the returned metadata.

get_product_list?
event_id=<eid_list>;
no_metadata=false

Request a list of new products based on the event ID list returned in the
previous request. Return the product metadata in the body of the re-
sponse. Update the local database.

HTTP get Loop to get each product file.

Notification Loop After all products have been received, loop through the database look-
ing for notifications to be queued (see Chapter 7).

4.1.3 Poll for Server and Metadata Updates
The ShakeCast Server is designed to allow downstream servers to “discover” new servers and
new types of products. These may be “pushed” from an upstream server, or a downstream
server may periodically poll for these updates. The following exchange shows a downstream
server checking for new servers that can provide a data feed and.

Poll for All New Servers

Request Description

get_server_list?
update_time=<timestamp>;
no_metadata=false

Request a list of updated servers since the last poll time. Return the
server metadata in the body of the response. Update the local da-
tabase.

ShakeCast System Specification

July 2004 Gatekeeper Systems 4-3

update_time=<timestamp>;
no_metadata=false

server metadata in the body of the response. Update the local da-
tabase.

Notification Loop Notify the system administrator if any of the new servers offer a data
feed (based on permissions). Optionally, configure these new serv-
ers to feed data to this server (see Chapter 7).

The following exchange shows a downstream server polling for new product types. These new
product types are entered into the local database, and become available to users to request and
use in notification activity.

Poll for New Product Formats

Request Description

get_metadata Request a list of updated product formats since the last poll time, using
the default parameters in the HTTP Get request. Return the product for-
mat metadata in the body of the response. Update the local database
with the new formats, if any.

Notification Loop Notify the system administrator of any updated product formats (see
Chapter 7).

4.1.4 Provide Heartbeat
ShakeCast servers can inform one another of their operating status by sending heartbeat mes-
sages. These messages include parameters that inform the receiving server of the general health
and status of the requesting server.

Notify the Server of Our Status

Request Description

heartbeat?server_id=<sid>;
uptime=<delta-time>;
system_generation=<generation>;
error_count=<count>;
software_version=<version-string>

Notify the receiving server of the status of the requesting
server. Request returns the ShakeCast software version
running on the receiving server. The receiving server will
update the SERVER table LAST_HEARD_FROM column
and other columns as appropriate, depending on which op-
tional parameters are passed.

4.2 Server Push Interactions
ShakeCast servers may send data to one another in an unsolicited fashion. This type of interac-
tion is called “Push”. Push interactions may be single-step or multi-step.

In a single-step push interaction, all the information needed by the downstream server is sent in
a single request.

Remember that a ShakeCast request may be composed of multiple HTTP requests in both di-
rections. In a multi-step push interaction, the first interaction is an unsolicited push from an up-
stream server to notify the downstream server of new information. The remainder of the inter-

ShakeCast System Specification

4-4 Gatekeeper Systems July 2004

action consists of traditional “pull” or “get” operations, wherein the downstream server uses the
new information provided in the push step to make targeted requests. Note that in a multi-step
push, the Get operations may be executed against a different server than the one that generated
the push (and, in practice, this will frequently be the case).

4.2.1 New Event Push from ShakeMap Server
The entire cascade of ShakeMap events is begun when a ShakeMap Server (not a ShakeCast
Server) has detected a new significant event. A ShakeMap Server may send along every event
it is notified about, but a more useful behavior will be to only send those events that have trig-
gered the production of a ShakeMap.

In the following request, a ShakeMap Server simply sends the most basic of event information
to one or more downstream ShakeCast Servers.

Notify a Server of a New Event (Only)

Request Description

new_event?event_id=<eid>;
event_ts=<ts>

Notify the receiving server that a new event is known to the re-
questing server. The receiving server should enter the new event
ID in the ShakeCast database, and may choose to send this infor-
mation along to downstream servers. Note that the event_xml
argument is not provided in the request, as a typical ShakeMap
server does not respond to HTTP get requests, but only sends in-
formation unsolicited.

4.2.2 New Event Push from ShakeCast Server
In the following interaction, a ShakeCast Server is notified by another ShakeCast Server of a
new event. This interaction might be used, for example, between two servers who believe they
are both authoritative and complete for the list of events. If the receiving server is notified of a
new event that it does not already “know about”, then this is an indication that the ShakeCast
network may have become partitioned. All of the information needed is exchanged in a single
HTTP request.

Notify a Server of a New Event (Only)

Request Description

new_event?event_id=<eid>;
event_xml=<URL>

Notify the receiving server that a new event is known to the requesting
server. The receiving server should enter the new event ID in the
ShakeCast database, and may choose to request further information
about the event using the event_XML parameter.

New event notification The receiving server will perform the New Event Notification process-
ing steps described in Chapter 7, Notification Processing.

ShakeCast System Specification

July 2004 Gatekeeper Systems 4-5

4.2.3 New Event and Product Push from ShakeCast Server
In the following interaction, more information is sent to the receiving server. In this case, the
server is also provided a URL where additional information is available. If the receiving server
is a downstream server, it will then use this URL to obtain detailed information.

Notify a Server of a New Event and New Products

Request Description

new_event?event_id=<eid>;
event_xml=<URL>;
event_location=<lat:lon>

Notify the downstream server that a new event is known
to the upstream server. The downstream server should
enter the new event ID in the ShakeCast database, and
may choose to request further information about the
event.

HTTP Get <event XML URL> Based on the event location in the original new_event
request, the downstream server decides it wants to know
more about the event for which a notification was just re-
ceived. All of this information is available by retrieving the
Event XML. The server does so using an ordinary HTTP
get, and then loads that information into the local data-
base.

New event loop Perform the processing steps required when an event is
added or updated.

get_product_list?event_id=<eid> Based on the information in the Event XML, the down-
stream server decides it needs to retrieve all available
products for this event. The product XML is requested,
but this request will generally fail because in most cases
when a new event is created there are no products yet
available.

Wait loop Wait a pre-determined amount of time before checking
again for new products for this event. Loop over failures a
per-determined number of times.

new_product?product_id=<pid>;
product_xml=<URL>;
product_url=<URL>;
size=<bytes>

While the downstream server is waiting to re-issue the
failed get_product_list request, the upstream server
pushes a new product downstream.

New product loop The downstream server then performs the processing
steps required when a product is added or updated.

HTTP Get product file

HTTP Get product XML

Retrieve the product file and product XML.

New product loop After receiving a new product file, perform the New Prod-
uct Loop. When the file has been received, outstanding
requests in the wait loop are canceled.

New product notification loop Perform the notification steps associated with a new prod-
uct.

ShakeCast System Specification

4-6 Gatekeeper Systems July 2004

4.2.4 More Interactions
[tbs]

4.3 Registration Interactions
ShakeCast servers may register with one another. They do so by making a request of the other
server, and then offering a URL where the other server may obtain additional information in the
form of a Server XML file.

4.3.1 Register New Downstream Server
The most common registration interaction occurs when a new server is brought online. As part
of the server configuration process, the new server finds and registers with one or more up-
stream servers who can provide it with a feed of ShakeCast broadcasts.

Request Description

register?name=<fqhn>;
server_xml=<URL>

Request that the receiving server (now called the registration
server) add the new server (now called the registering server)
to the SERVER table. If the new server is successfully added,
the receiving server will return a Server XML message con-
taining a unique SERVER_ID to be used in subsequent inter-
actions.

HTTP get <URL> The registration server now turns around and executes an
HTTP get against the URL provided in the register request.
This URL should return a complete Server XML file. The reg-
istration will add the information in this XML file to the
SERVER table.

heartbeat?server_id=<sid>;
uptime=<delta-time>;
system_generation=<generation>;
error_count=<count>;
software_version=<version-string>

Tell the upstream server hello.

4.3.2 Update Metadata for Existing Downstream Server
[tbs]

Request Description

ShakeCast System Specification

July 2004 Gatekeeper Systems 4-7

4.3.3 Request Complete Metadata Update
[tbs]

Request Description

ShakeCast System Specification

July 2004 Gatekeeper Systems 5-1

Chapter 5 XML Documents

Extensible Markup Language (known by the acronym XML) is a widely used and easily im-
plemented method of exchanging data between disparate computer systems. The ShakeCast
System uses XML to communicate all kinds of information between ShakeCast servers:

• Data about ShakeCast Servers and the ShakeCast software itself
• Data about events (earthquakes) and products (data files) available on the network
• Status information that helps the administrators of ShakeCast servers tell if their network is

running smoothly

This Section documents the ShakeCast XML file formats.

5.1 Introduction to ShakeCast XML
[tbs]

5.1.1 [tbs]
[tbs]

5.2 Event XML
A ShakeCast Event is described by Event XML. A sample Event XML is shown in the fol-
lowing figure.

<event
event_id="1234" event_version="2"
event_status="ACTUAL"
event_type="EARTHQUAKE"
event_name="Northridge"
event_location_description="1.2mi SSW of Northridge, CA"
event_timestamp="1994-05-07 14:34:23" external_event_id="C123V4"
magnitude="6.7" latitude="34.2345222" longitude="-118.123222"

/>

ShakeCast System Specification

5-2 Gatekeeper Systems July 2004

The Event XML is defined by the following XML Schema.

[tbs]

5.3 Product XML
A ShakeCast Product is described by Product XML. A sample Product XML is shown in the
following figure.

The Product XML is defined by the following XML Schema.

[tbs]

5.4 ShakeMap XML
A ShakeCast ShakeMap is described by ShakeMap XML. A sample ShakeMap XML is shown
in the following figure.

The ShakeMap XML is defined by the following XML Schema.

<product
product_type="TVMAP.PNG"
product_status="RELEASED"
generating_server_id="1"
generation_timestamp="1994-05-07 14:34:23.00Z"
bounding_box="34.2345678:-118.1234567::34.2345678:-
118.1234567"
product_id="1234" product_version="1"
shakemap_id="1234" shakemap_version="1"

/>

<shakemap
shakemap_id="1234" shakemap_version="1"
event_id="1234" event_version="1"
generation_timestamp="1994-05-07 14:34:23.00Z"
begin_timestamp="1994-05-07 14:29:05.01Z"
end_timestamp="1994-05-07 14:30:01.10Z"
bounding_box="34.234567:-118.123456::34.234567:-118.1234567"

 <metric metric_name="PSA03" min_value="0.0" max_value="70.1" />
 <metric metric_name="PSA10" min_value="0.0" max_value="70.1" />
 <metric metric_name="PSA30" min_value="0.0" max_value="70.1" />
 <metric metric_name="PGV" min_value="0.0" max_value="70.1" />
 <metric metric_name="PGA" min_value="0.0" max_value="70.1" />

 </shakemap>

ShakeCast System Specification

July 2004 Gatekeeper Systems 5-3

[tbs]

5.5 Server Status XML
[tbs]

5.6 ShakeCast Status XML
[tbs]

5.7 ShakeCast Metadata XML
[tbs]

ShakeCast System Specification

July 2004 Gatekeeper Systems 6-1

Chapter 6 The ShakeCast Database

ShakeCast servers store much of the data used by the server in a relational database. The
ShakeCast database contains information needed to interact with other ShakeCast Servers, data
that will be presented to users, configuration information needed to perform notifications, and
various other kinds of data.

The following paragraphs document the structure of the ShakeCast database using a standard
entity-relationship modeling syntax.

6.1 Introduction
The ShakeCast database is used in all elements of the ShakeCast system. Although some tables
are used in many different stages of ShakeCast operation, the tables may be conveniently
grouped as follows:

• Tables that define the ShakeCast system, the network of ShakeCast servers, exchanges
between those servers, and the administrators who maintain that network

• Tables that define ShakeCast events (earthquakes), products, and related data

• Tables that are used to notify end users of earthquakes, shaking levels at particular fa-
cilities, and other ShakeCast events

• Miscellaneous operational tables

Each of these groups of tables is documented in the sections below.

ShakeCast System Specification

6-2 Gatekeeper Systems July 2004

EVENT_STATUS
EVENT_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

PRODUCT_TYPE
PRODUCT_TYPE

NAME
DESCRIPTION
FILENAME
UPDATE_USERNAME
UPDATE_TIMESTAMP
METRIC_ID (FK)

SHAKEMAP_STATUS
SHAKEMAP_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

EXCHANGE_TYPE
EXCHANGE_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

EVENT_TYPE
EVENT_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

EXCHANGE_ACTION
EXCHANGE_ACTION

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

LOG_MESSAGE_TYPE
LOG_MESSAGE_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

EVENT
EVENT_ID
EVENT_VERSION

EVENT_NAME
EVENT_LOCATION_DESCRIPTION
EVENT_TIMESTAMP
EXTERNAL_EVENT_ID
RECEIVE_TIMESTAMP
SUPERCEDED_TIMESTAMP
MAGNITUDE
LATITUDE
LONGITUDE

EVENT_STATUS (FK)
EVENT_TYPE (FK)

SERVER_STATUS
SERVER_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

PERMISSION
PERMISSION

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

SERVER_PERMISSION
SERVER_ID (FK)
PERMISSION (FK)

UPDATE_USERNAME
UPDATE_TIMESTAMP

SERVER_ADMINISTRATOR
SERVER_ID (FK)

EMAIL_ADDRESS
PHONE_NUMBER
FULL_NAME
UPDATE_USERNAME
UPDATE_TIMESTAMP

ADMINISTRATOR_ROLE (FK)

ADMINISTRATOR_ROLE
ADMINISTRATOR_ROLE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

NOTIFICATION_TYPE
NOTIFICATION_TYPE

NAME
DESCRIPTION
MAXIMUM_DELIVERY_ATTEMPTS
UPDATE_USERNAME
UPDATE_TIMESTAMP

NOTIFICATION_CLASS (FK)

PROCESSOR_PARAMETER
PROCESSOR_NAME
PARAMETER_NAME

PARAMETER_VALUE
UPDATE_USERNAME
UPDATE_TIMESTAMP

DELIVERY_METHOD
DELIVERY_METHOD

NAME
DESCRIPTION
SCRIPT_NAME
UPDATE_USERNAME
UPDATE_TIMESTAMP

USER_DELIVERY_METHOD
SHAKECAST_USER (FK)
DELIVERY_METHOD (FK)

DELIVERY_ADDRESS
PRIORITY
AUXILIARY_DATA
UPDATE_USERNAME
UPDATE_TIMESTAMP

USER_TYPE
USER_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

DELIVERY_STATUS
DELIVERY_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

NOTIFICATION_CLASS
NOTIFICATION_CLASS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

FACILITY_TYPE
FACILITY_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

MESSAGE_FORMAT
MESSAGE_FORMAT

NAME
DESCRIPTION
FORMAT_STRING
UPDATE_USERNAME
UPDATE_TIMESTAMP

SHAKEMAP
SHAKEMAP_ID
SHAKEMAP_VERSION

GENERATION_TIMESTAMP
RECEIVE_TIMESTAMP
SUPERCEDED_TIMESTAMP
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
BEGIN_TIMESTAMP
END_TIMESTAMP

SHAKEMAP_STATUS (FK)
EVENT_ID (FK)
EVENT_VERSION (FK)
GENERATING_SERVER (FK)
SHAKEMAP_REGION (FK)

GRID_ID (FK)

PRODUCT_STATUS
PRODUCT_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

GRID
GRID_ID

LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
ORIGIN_LAT
ORIGIN_LON
LATITUDE_CELL_COUNT
LONGITUDE_CELL_COUNT

SHAKECAST_USER
SHAKECAST_USER

EMAIL_ADDRESS
PHONE_NUMBER
FULL_NAME
PASSWORD
USERNAME

UPDATE_USERNAME
UPDATE_TIMESTAMP

USER_TYPE (FK)

SHAKEMAP_METRIC
SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)
METRIC_ID (FK)

VALUE_COLUMN_NUMBER
MAX_VALUE
MIN_VALUE

PRODUCT
PRODUCT_ID

MAX_VALUE
MIN_VALUE
GENERATION_TIMESTAMP
RECEIVE_TIMESTAMP
SUPERCEDED_TIMESTAMP
SOURCE_FILENAME
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
PRODUCT_FILE_EXISTS

SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)
EVENT_ID (FK)
EVENT_VERSION (FK)
PRODUCT_TYPE (FK)
PRODUCT_STATUS (FK)
GENERATING_SERVER_ID (FK)

SERVER
SERVER_ID

DNS_ADDRESS
IP_ADDRESS
OWNER_ORGANIZATION
LAST_HEARD_FROM
ERROR_COUNT
SYSTEM_GENERATION
SOFTWARE_VERSION
BIRTH_TIMESTAMP
DEATH_TIMESTAMP
PKI_PUBLIC_KEY

LAT
LON
LAST_EVENT_TIMESTAMP
UPSTREAM_DOWNSTREAM_FLAG
NUMBER_OF_USERS
ACCESS_COUNT
EVENT_COUNT
PRODUCT_COUNT
PASSWORD
UPDATE_USERNAME
UPDATE_TIMESTAMP

SERVER_STATUS (FK)

EXCHANGE_LOG
EXCHANGE_LOG_ID

EXCHANGE_TIMESTAMP
EXCHANGE_ITEM_PK
EXCHANGE_PARAMETER

SERVER_ID (FK)
LOG_MESSAGE_TYPE (FK)
EXCHANGE_TYPE (FK)
EXCHANGE_ACTION (FK)

SHAKEMAP_REGION
SHAKEMAP_REGION

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

NOTIFICATION_REQUEST
NOTIFICATION_REQUEST_ID

LIMIT_VALUE
USER_MESSAGE
NOTIFICATION_PRIORITY
AUXILIARY_SCRIPT
UPDATE_USERNAME
UPDATE_TIMESTAMP

FACILITY_ID (FK)
METRIC_ID (FK)
DAMAGE_LEVEL (FK)
SHAKECAST_USER (FK)
NOTIFICATION_TYPE (FK)
EVENT_TYPE (FK)
DELIVERY_METHOD (FK)
MESSAGE_FORMAT (FK)

DAMAGE_LEVEL
DAMAGE_LEVEL

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

METRIC
METRIC_ID

SHORT_NAME
NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

FACILITY_FRAGILITY
FACILITY_ID (FK)
METRIC_ID (FK)
DAMAGE_LEVEL (FK)

LOW_LIMIT
HIGH_LIMIT
UPDATE_USERNAME
UPDATE_TIMESTAMP

NOTIFICATION
NOTIFICATION_ID

QUEUE_TIMESTAMP
DELIVERY_TIMESTAMP
NEXT_DELIVERY_TIMESTAMP
DELIVERY_ATTEMPTS
DELIVERY_ATTEMPT_TIMESTAMP

DELIVERY_ADDRESS

NOTIFICATION_REQUEST_ID (FK)
SHAKECAST_USER (FK)

FACILITY_ID (FK)
DELIVERY_STATUS (FK)
GRID_VALUE_ID (FK)
EVENT_ID (FK)
EVENT_VERSION (FK)
PRODUCT_ID (FK)
METRIC_ID (FK)

FACILITY
FACILITY_ID

EXTERNAL_FACILITY_ID
FACILITY_NAME
SHORT_NAME
DESCRIPTION
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
UPDATE_USERNAME
UPDATE_TIMESTAMP

FACILITY_TYPE (FK)

GRID_VALUE
GRID_VALUE_ID

LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
VALUE_1
VALUE_2
VALUE_3
VALUE_4
VALUE_5
VALUE_6
VALUE_7
VALUE_8
VALUE_9
VALUE_10

SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)

6.2 Database Tables for Servers and System Administrators
The first group of tables defines ShakeCast servers and the organizations and users responsible
for those servers. These tables also define the rights that each server has to communicate with
the current server.

ShakeCast System Specification

July 2004 Gatekeeper Systems 6-3

EXCHANGE_TYPE
EXCHANGE_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

EXCHANGE_ACTION
EXCHANGE_ACTION

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

LOG_MESSAGE_TYPE
LOG_MESSAGE_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

SERVER_STATUS
SERVER_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

PERMISSION
PERMISSION

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

SERVER_PERMISSION
SERVER_ID (FK)
PERMISSION (FK)

UPDATE_USERNAME
UPDATE_TIMESTAMP

SERVER_ADMINISTRATOR
SERVER_ID (FK)

EMAIL_ADDRESS
PHONE_NUMBER
FULL_NAME
UPDATE_USERNAME
UPDATE_TIMESTAMP

ADMINISTRATOR_ROLE (FK)

ADMINISTRATOR_ROLE
ADMINISTRATOR_ROLE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

PROCESSOR_PARAMETER
PROCESSOR_NAME
PARAMETER_NAME

PARAMETER_VALUE
UPDATE_USERNAME
UPDATE_TIMESTAMP

SERVER
SERVER_ID

DNS_ADDRESS
IP_ADDRESS
OWNER_ORGANIZATION
LAST_HEARD_FROM
ERROR_COUNT
SYSTEM_GENERATION
SOFTWARE_VERSION
BIRTH_TIMESTAMP
DEATH_TIMESTAMP
PKI_PUBLIC_KEY

LAT
LON
LAST_EVENT_TIMESTAMP
UPSTREAM_DOWNSTREAM_FLAG
NUMBER_OF_USERS
ACCESS_COUNT
EVENT_COUNT
PRODUCT_COUNT
PASSWORD
UPDATE_USERNAME
UPDATE_TIMESTAMP

SERVER_STATUS (FK)

EXCHANGE_LOG
EXCHANGE_LOG_ID

EXCHANGE_TIMESTAMP
EXCHANGE_ITEM_PK
EXCHANGE_PARAMETER

SERVER_ID (FK)
LOG_MESSAGE_TYPE (FK)
EXCHANGE_TYPE (FK)
EXCHANGE_ACTION (FK)

Servers and Administrators

6.2.1 SERVER
The SERVER table contains information about every ShakeCast server that this server commu-
nicates with and every server that creates data used by this server.

Column Datatype Description

SERVER_ID Integer A globally unique identifier for the server

DNS_ADDRESS String DNS address (name) of the server

IP_ADDRESS String IP address (numeric address) of the server

LAST_HEARD_FROM Datetime The date and time (GMT) that the server was last
heard from by this server

ERROR_COUNT Integer The number of errors recorded since the last time a
successful exchange took place with this server.

SYSTEM_GENERATION Integer The number of times that this server has restarted
the ShakeCast software. This value is incre-
mented each time a server is restarted.

SOFTWARE_VERSION String The version string for the ShakeCast software this
server is currently running.

OWNER_ORGANIZATION String The name of the organization that operates this
server

ShakeCast System Specification

6-4 Gatekeeper Systems July 2004

server

BIRTH_TIMESTAMP Datetime The earliest known date of operation of the server

DEATH_TIMESTAMP Datetime The last known date of operation of the server

STATUS Integer The current operational status of the server

LAT Float Latitude of this server

LON Float Longitude of this server

LAST_EVENT_TS Datetime The date and time of the last update to the event
table on this server.

UPSTREAM_DOWNSTREAM_FLAG String The value “U” if the server in this record is up-
stream relative to this server. The value “D” if the
server in this record is downstream relative to the
local server. The value “B” if the server is both
upstream and downstream. The value “S” if this is
the server’s own (self) record. The value “A” if this
server is an authoritative source of data. Null if the
relationship to this server is not known or unde-
fined.

PKI_PUBLIC_KEY String The public key associated with this server.

NUMBER_OF_USERS Integer The number of unique user IDs that have access to
ShakeCast data.

ACCESS_COUNT Integer The number of user accesses to ShakeCast data
and reports.

EVENT_COUNT Integer The number of ShakeCast events stored in the
ShakeCast server.

PRODUCT_COUNT Integer The number of ShakeCast products stored in the
ShakeCast server.

PASSWORD String The password used by the local server to log into
this remote server.

UPDATE_TIMESTAMP Date Last time this record was changed.

UPDATE_USERNAME String Local database user who performed the last up-
date.

6.2.2 SERVER_STATUS
The SERVER_STATUS table defines the valid codes for the STATUS column of the SERVER
table.

Column Datatype Description

SERVER_STATUS String Type code for server status

NAME String Status name

DESCRIPTION String Human readable meaning for this value

ShakeCast System Specification

July 2004 Gatekeeper Systems 6-5

6.2.3 PERMISSION
The PERMISSION table defines the valid codes for the PERMISSION column of the SERVER
table.

Column Datatype Description

PERMISSION String Type code for server permission

NAME String Status name

DESCRIPTION String Human readable meaning for this value

6.2.4 SERVER_PERMISSION
The SERVER_PERMISSION table defines which activities are valid when communicating with
the each server in the ShakeCast network.

Column Datatype Description

SERVER_ID Integer A globally unique identifier for the server, and foreign key into the
SERVER table.

PERMISSION Integer Type code for operations permitted in interactions between the
local server and the server indicated.

6.2.5 SERVER_ADMINISTRATOR
The SERVER_ADMINISTRATOR table contains information about the people who administer
ShakeCast servers. In most cases, a particular individual will be associated with only a single
ShakeCast server.

Column Datatype Description

SERVER_ID Integer The globally unique ID for the server with which this adminis-
trator is associated.

ADMINISTRATOR_ROLE Integer The role of this individual for this server

EMAIL_ADDRESS String The email address of the individual

PHONE_NUMBER String The full phone number of the individual

FULL_NAME String The administrator’s full name

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

ShakeCast System Specification

6-6 Gatekeeper Systems July 2004

6.2.6 ADMINISTRATOR_ROLE
The ADMINISTRATOR_ROLE table defines the valid roles for administrators.

Column Datatype Description

ADMNISTRATOR_ROLE Integer Type code for the administrator role

NAME String Name of role

SHORT_NAME String Abbreviation for role name

DESCRIPTION String Human readable meaning for this value

6.3 Database Tables for Events, ShakeMaps, and Products
The following tables contain the data needed to represent Events, ShakeMaps, and ShakeMap
Products.

ShakeCast System Specification

July 2004 Gatekeeper Systems 6-7

EVENT_STATUS
EVENT_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

PRODUCT_TYPE
PRODUCT_TYPE

NAME
DESCRIPTION
FILENAME
UPDATE_USERNAME
UPDATE_TIMESTAMP
METRIC_ID (FK)

SHAKEMAP_STATUS
SHAKEMAP_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

EXCHANGE_TYPE
EXCHANGE_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

EVENT_TYPE
EVENT_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

EXCHANGE_ACTION
EXCHANGE_ACTION

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

EVENT
EVENT_ID
EVENT_VERSION

EVENT_NAME
EVENT_LOCATION_DESCRIPTION
EVENT_TIMESTAMP
EXTERNAL_EVENT_ID
RECEIVE_TIMESTAMP
SUPERCEDED_TIMESTAMP
MAGNITUDE
LATITUDE
LONGITUDE

EVENT_STATUS (FK)
EVENT_TYPE (FK)

SHAKEMAP
SHAKEMAP_ID
SHAKEMAP_VERSION

GENERATION_TIMESTAMP
RECEIVE_TIMESTAMP
SUPERCEDED_TIMESTAMP
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
BEGIN_TIMESTAMP
END_TIMESTAMP

SHAKEMAP_STATUS (FK)
EVENT_ID (FK)
EVENT_VERSION (FK)
GENERATING_SERVER (FK)
SHAKEMAP_REGION (FK)

GRID_ID (FK)

PRODUCT_STATUS
PRODUCT_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

GRID
GRID_ID

LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
ORIGIN_LAT
ORIGIN_LON
LATITUDE_CELL_COUNT
LONGITUDE_CELL_COUNT

SHAKEMAP_METRIC
SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)
METRIC_ID (FK)

VALUE_COLUMN_NUMBER
MAX_VALUE
MIN_VALUE

PRODUCT
PRODUCT_ID

MAX_VALUE
MIN_VALUE
GENERATION_TIMESTAMP
RECEIVE_TIMESTAMP
SUPERCEDED_TIMESTAMP
SOURCE_FILENAME
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
PRODUCT_FILE_EXISTS

SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)
EVENT_ID (FK)
EVENT_VERSION (FK)
PRODUCT_TYPE (FK)
PRODUCT_STATUS (FK)
GENERATING_SERVER_ID (FK)

SERVER
SERVER_ID

DNS_ADDRESS
IP_ADDRESS
OWNER_ORGANIZATION
LAST_HEARD_FROM
ERROR_COUNT
SYSTEM_GENERATION
SOFTWARE_VERSION
BIRTH_TIMESTAMP
DEATH_TIMESTAMP
PKI_PUBLIC_KEY

LAT
LON
LAST_EVENT_TIMESTAMP
UPSTREAM_DOWNSTREAM_FLAG
NUMBER_OF_USERS
ACCESS_COUNT
EVENT_COUNT
PRODUCT_COUNT
PASSWORD
UPDATE_USERNAME
UPDATE_TIMESTAMP

SERVER_STATUS (FK)
EXCHANGE_LOG
EXCHANGE_LOG_ID

EXCHANGE_TIMESTAMP
EXCHANGE_ITEM_PK
EXCHANGE_PARAMETER

SERVER_ID (FK)
LOG_MESSAGE_TYPE (FK)
EXCHANGE_TYPE (FK)
EXCHANGE_ACTION (FK)

SHAKEMAP_REGION
SHAKEMAP_REGION

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

METRIC
METRIC_ID

SHORT_NAME
NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

GRID_VALUE
GRID_VALUE_ID

LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
VALUE_1
VALUE_2
VALUE_3
VALUE_4
VALUE_5
VALUE_6
VALUE_7
VALUE_8
VALUE_9
VALUE_10

SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)

Events and Products

6.3.1 EVENT
The EVENT table contains information about seismic events. The EVENT_ID is a globally
unique, permanently assigned identifier associated with a single seismic event.

ShakeCast System Specification

6-8 Gatekeeper Systems July 2004

Column Datatype Description

EVENT_ID Integer A globally unique identifier for the event

EVENT_VERSION Integer A sequential version number. The latest version is
the most current representation of the data about
this event.

EVENT_TYPE Integer Foreign key to the EVENT_TYPE table

EVENT_TIMESTAMP Datetime The date and time (GMT) that the event occurred

EXTERNAL_EVENT_ID String Event ID in a locally-defined external server

EVENT_STATUS Integer The status of this event (active, cancelled, test, ar-
chive, etc.)

EVENT_NAME String Name of event (i.e., “Northridge”)

EVENT_LOCATION_DESCRIPTION String Human-readable location description (i.e., “8.1mi of
Pasadena, CA”)

RECEIVE_TIMESTAMP Datetime The time this event information was first received
on this server

LAT Float The latitude of the point representation of the event

LON Float The longitude of the point representation of the
event

SUPERCEDED_TIMESTAMP Datetime The time this event was superceded by a newer
version or by a different event.

6.3.2 EVENT_STATUS
The EVENT_STATUS table defines the valid codes for the STATUS column of the EVENT
table. The event status is typically one of the following: active, cancelled, test, archive, or un-
known.

Column Datatype Description

EVENT_STATUS String Type code for event status

NAME String Status name

DESCRIPTION String Human readable meaning for this value

6.3.3 EVENT_TYPE
The EVENT_TYPE table defines the valid codes for the EVENT_TYPE column of the EVENT
table. The event type is typically one of the following: system test, local test, or active.

Column Datatype Description

ShakeCast System Specification

July 2004 Gatekeeper Systems 6-9

EVENT_TYPE Integer Code for the event type

NAME String Event type name

DESCRIPTION String Human readable meaning for this value

6.3.4 SHAKEMAP
The SHAKEMAP table describes a single ShakeMap. A ShakeMap is produced outside of the
ShakeCast system, by a ShakeMap Server. ShakeMaps are associated with zero or more events
and with zero or more Products.

Column Datatype Description

SHAKEMAP_ID Integer Uniquely defines a ShakeMap.

VERSION Integer ShakeMap versions start with one and are increased each
time the ShakeMap is updated. Only the latest version of
a ShakeMap is correct. The primary key of this table is
the SHAKEMAP_ID plus VERSION..

GENERATION_TIMESTAMP Datetime The time this ShakeMap was first created

SHAKEMAP_REGION String The ShakeMap region that generated this ShakeMap

GENERATING_SERVER Integer The unique ID of a ShakeCast server

SHAKEMAP_STATUS Integer The status of this ShakeMap (active, cancelled, test, ar-
chive, etc.)

RECEIVE_TIMESTAMP Datetime The timestamp of the last time this ShakeMap was re-
ceived from an upstream server

BEGIN_TIMESTAMP Datetime The beginning date and time of the period covered by this
ShakeMap.

END_TIMESTAMP Datetime The ending date and time of the period covered by this
ShakeMap.

LAT_MIN Float

LAT_MAX Float

LON_MIN Float

LON_MAX Float

Bounding box of the area covered by this ShakeMap

SUPERCEDED_TIMESTAMP Datetime Time this ShakeMap was superceded by a new version or
by a different ShakeMap.

GRID_ID Integer Foreign key to the Grid Table, which defines the bounding
box and cell size of the grid that applies to this ShakeMap

ShakeCast System Specification

6-10 Gatekeeper Systems July 2004

6.3.5 SHAKEMAP_STATUS
The SHAKEMAP_STATUS table defines the valid codes for the STATUS column of the
SHAKEMAP table. The ShakeMap status is typically one of the following: active, cancelled,
test, archive, or unknown.

Column Datatype Description

SHAKEMAP_STATUS String Type code for ShakeMap status

NAME String Status name

DESCRIPTION String Human readable meaning for this value

6.3.6 SHAKEMAP_REGION
The SHAKEMAP_REGION table defines the ShakeMap Regions. Current regions include
Southern California, Northern California, and Utah.

Column Datatype Description

SHAKEMAP_REGION String Type code for ShakeMap Region

NAME String Region Name

DESCRIPTION String Human readable meaning for this value

6.3.7 PRODUCT
This table contains information about each ShakeMap product. A product is a single metric
(PRODUCT_METRIC column) for a single ShakeMap (SHAKEMAP_ID column) in a single
format (PRODUCT_FORMAT column).

Column Datatype Description

PRODUCT_ID Integer A globally unique identifier for this product.

VERSION Integer Product versions start with one and are increased each
time the product is updated. Only the latest version of a
product is valid and correct. The primary key of this table
is the PRODUCT_ID plus VERSION.

PRODUCT_STATUS Integer The status of this product (active, cancelled, test, archive,
etc.)

GENERATION_TIMESTAMP Datetime The time this ShakeMap was first created.

UPDATE_TIMESTAMP Datetime The last time this table or the ShakeMap itself was up-
dated.

GENERATING_SERVER Integer The unique ID of a ShakeCast server

ShakeCast System Specification

July 2004 Gatekeeper Systems 6-11

METRIC Integer The shaking metric represented in this product, such as
“acceleration”, “instrumental intensity”, etc.

MAX_VALUE Integer The maximum value for METRIC contained within this
product.

MIN_VALUE Integer The minimum value for METRIC contained within this
product.

RECEIVE_TIMESTAMP Datetime The time this product information was first received on this
server

UPDATE_TIMESTAMP Datetime The time this product information was last updated

LAT_MIN Float

LAT_MAX Float

LON_MIN Float

LON_MAX Float

Bounding box of the area covered by this product

GRID_ID Integer A foreign key to the grid layout that is used when this data
is represented relationally

SOURCE_FILENAME String The name of the file in the local filesystem that contains
this product. This may be a single file, a directory name,
or the name of an archive file containing multiple files
(e.g., a ZIP file)

SUPERCEDED_BY Integer The PRODUCT_ID of a product that supercedes this one.

SUPERCEDES Integer The PRODUCT_ID of a product that this product super-
cedes. If this product supercedes more than one product,
only one is listed here.

6.3.8 PRODUCT_STATUS
The PRODUCT_STATUS table defines the valid codes for the STATUS column of the
PRODUCT table. The product status is typically one of the following: active, cancelled, test,
archive, or unknown.

Column Datatype Description

PRODUCT_STATUS String Type code for product status

NAME String Status name

DESCRIPTION String Human readable meaning for this value

6.3.9 METRIC
The METRIC table defines the valid codes for the METRIC column of the PRODUCT table.
Shaking metrics include “peak acceleration”, “maximum velocity”, “instrumental intensity”,
and so on.

ShakeCast System Specification

6-12 Gatekeeper Systems July 2004

Column Datatype Description

METRIC_ID Integer Unique identifier for this metric.

NAME String Product type name

SHORT_NAME String Abbreviation for metric name

DESCRIPTION String Human readable meaning of this metric

6.3.10 PRODUCT_TYPE
The PRODUCT_TYPE table defines the valid codes for the PRODUCT_FORMAT column of
the PRODUCT table. Product Types describe both the data in a product (e.g., “TV Map”) and
the file format (e.g., “.zip” or “.jpg”).

Column Datatype Description

PRODUCT_TYPE Integer Format code for products

NAME String Product format name

DESCRIPTION String Human readable meaning for this value

FILENAME String The string used to construct the filename for this product
type. This information is concatenated with the short name
of the metric to construct a full filename to store the product.

METRIC_ID Integer Foreign key to the Metric table. Defines the metric con-
tained in this Product Type. Not all Product Types have a
metric (e.g., GRID_XYZ products contain a mix of products).

6.3.11 GRID
A ShakeMap Grid is a rectangular array of cells, each of fixed size (in terms of latitude and lon-
gitude). The GRID table describes this array.

Column Datatype Description

GRID_ID Integer Unique ID for this grid.

ORIGIN_LATITUDE Float Latitude of the origin of the grid

ORIGIN_LONGITUDE Float Longitude of the origin of the grid

LATITUDE_CELL_COUNT Integer Number of cells in the direction of latitude (north-
south).

LONGITUDE_CELL_COUNT Integer Number of cells in the direction of longitude (east-
west)

LAT_MIN Float

LAT_MAX Float

Bounding box of the area covered by this product

ShakeCast System Specification

July 2004 Gatekeeper Systems 6-13

LON_MIN Float

LON_MAX Float

6.3.12 GRID_VALUE
Each ShakeCast Grid File is also represented relationally as a set of rows in the GRID_VALUE
table. The values are stored in a second-normal form instead of a third-normal form table for
performance and efficiency. The values are stored in columns named VALUE_1, VALUE_2,
and so on. The SHAKEMAP_METRIC table defines which metrics are stored in each value
column.

Column Datatype Description

GRID_VALUE_ID Integer A unique ID for this Grid Value row.

SHAKEMAP_ID Integer

SHAKEMAP_VERSION Integer

Foreign key to the ShakeMap Table. Defines the ShakeMap
for which this Grid Value applies.

LAT_MIN Float

LAT_MAX Float

LON_MIN Float

LON_MAX Float

Bounding box of the area covered by this product

VALUE_1 Float

VALUE_2 Float

VALUE_3 Float

VALUE_4 Float

VALUE_5 Float

VALUE_6 Float

VALUE_7 Float

VALUE_8 Float

VALUE_9 Float

VALUE_10 Float

The values for this grid cell for each metric generated by this
ShakeMap are stored in these columns. The table
SHAKEMAP_METRIC defines which column contains a par-
ticular metric. Additional columns may be added in the future.
No assumption should be made about the order in which met-
rics appear in these columns.

6.3.13 SHAKEMAP_METRIC
This table defines the metrics that are available from a particular ShakeMap. It also defines
which column in the GRID_VALUE table contains the values for a particular metric for this
ShakeMap.

Column Datatype Description

ShakeCast System Specification

6-14 Gatekeeper Systems July 2004

SHAKEMAP_ID Integer

SHAKEMAP_VERSION Integer

Foreign key to the ShakeMap Table. Defines the Shake-
Map for which this Grid Value applies.

METRIC_ID Integer Foreign key to the Metric Table

VALUE_COLUMN_NUMBER Integer The VALUE_x column number (i.e., VALUE_1, VALUE_2)
in the GRID_VALUE table that contains this metric for this
ShakeMap.

MIN_VALUE Float The minimum value of this metric in this ShakeMap (not
including possible null values).

MAX_VALUE Float The maximum value of this metric in this ShakeMap (not
including possible null values).

6.3.14 EXCHANGE_LOG
A product is moved between ShakeCast servers via an exchange. The EXCHANGE_LOG table
records salient information about this activity

Column Datatype Description

EXCHANGE_LOG_ID Integer Locally unique identifier for each exchange operation

SERVER_ID Integer Globally unique ID of the server on the other end of the
exchange. Foreign key to the SERVER table.

EXCHANGE_TYPE String Type of exchange activity. Foreign key to the
EXCHANGE_TYPE table

EXCHANGE_ACTION String The action taken during this exchange. Foreign key to the
EXCHANGE_ACTION table.

EXCHANGE_TIMESTAMP Datetime The date and time the exchange was initiated

EXCHANGE_ITEM_PK Integer A general parameter to hold the primary key value of the
item exchanged. The interpretation of this value depends
on the EXCHANGE_TYPE.

EXCHANGE_PARAMETER String A general parameter to contain additional data about the
exchange. The interpretation of this column depends on
the value of EXCHANGE_TYPE.

6.3.15 EXCHANGE_TYPE
The EXCHANGE_TYPE table defines the valid codes for the EXCHANGE_TYPE column of
the EXCHANGE table. Valid exchange types include “Server Update”, “Product”, and “Mis-
cellaneous”.

Column Datatype Description

EXCHANGE_TYPE String Type code for exchanges

ShakeCast System Specification

July 2004 Gatekeeper Systems 6-15

NAME String Exchange type name

DESCRIPTION String Human readable meaning for this value

6.3.16 EXCHANGE_ACTION
The EXCHANGE_ACTION table defines the disposition of the exchange. Valid exchange ac-
tion values include “Updated”, “Added”, “Ignored”, and “Rejected”.

Column Datatype Description

EXCHANGE_TYPE Integer Type code for exchanges

NAME String Exchange type name

DESCRIPTION String Human readable meaning for this value

6.4 Database Tables for Notification
In addition to tables defined elsewhere, the ShakeCast system uses the following tables to com-
pute and execute notification operations.

ShakeCast System Specification

6-16 Gatekeeper Systems July 2004

EVENT_TYPE
EVENT_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

EVENT
EVENT_ID
EVENT_VERSION

EVENT_NAME
EVENT_LOCATION_DESCRIPTION
EVENT_TIMESTAMP
EXTERNAL_EVENT_ID
RECEIVE_TIMESTAMP
SUPERCEDED_TIMESTAMP
MAGNITUDE
LATITUDE
LONGITUDE

EVENT_STATUS (FK)
EVENT_TYPE (FK)

NOTIFICATION_TYPE
NOTIFICATION_TYPE

NAME
DESCRIPTION
MAXIMUM_DELIVERY_ATTEMPTS
UPDATE_USERNAME
UPDATE_TIMESTAMP

NOTIFICATION_CLASS (FK)

DELIVERY_METHOD
DELIVERY_METHOD

NAME
DESCRIPTION
SCRIPT_NAME
UPDATE_USERNAME
UPDATE_TIMESTAMP

USER_DELIVERY_METHOD
SHAKECAST_USER (FK)
DELIVERY_METHOD (FK)

DELIVERY_ADDRESS
PRIORITY
AUXILIARY_DATA
UPDATE_USERNAME
UPDATE_TIMESTAMP

USER_TYPE
USER_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

DELIVERY_STATUS
DELIVERY_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

NOTIFICATION_CLASS
NOTIFICATION_CLASS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

FACILITY_TYPE
FACILITY_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

MESSAGE_FORMAT
MESSAGE_FORMAT

NAME
DESCRIPTION
FORMAT_STRING
UPDATE_USERNAME
UPDATE_TIMESTAMP

SHAKECAST_USER
SHAKECAST_USER

EMAIL_ADDRESS
PHONE_NUMBER
FULL_NAME
PASSWORD
USERNAME

UPDATE_USERNAME
UPDATE_TIMESTAMP

USER_TYPE (FK)

PRODUCT
PRODUCT_ID

MAX_VALUE
MIN_VALUE
GENERATION_TIMESTAMP
RECEIVE_TIMESTAMP
SUPERCEDED_TIMESTAMP
SOURCE_FILENAME
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
PRODUCT_FILE_EXISTS

SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)
EVENT_ID (FK)
EVENT_VERSION (FK)
PRODUCT_TYPE (FK)
PRODUCT_STATUS (FK)
GENERATING_SERVER_ID (FK)

NOTIFICATION_REQUEST
NOTIFICATION_REQUEST_ID

LIMIT_VALUE
USER_MESSAGE
NOTIFICATION_PRIORITY
AUXILIARY_SCRIPT
UPDATE_USERNAME
UPDATE_TIMESTAMP

FACILITY_ID (FK)
METRIC_ID (FK)
DAMAGE_LEVEL (FK)
SHAKECAST_USER (FK)
NOTIFICATION_TYPE (FK)
EVENT_TYPE (FK)
DELIVERY_METHOD (FK)
MESSAGE_FORMAT (FK)

DAMAGE_LEVEL
DAMAGE_LEVEL

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

METRIC
METRIC_ID

SHORT_NAME
NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

FACILITY_FRAGILITY
FACILITY_ID (FK)
METRIC_ID (FK)
DAMAGE_LEVEL (FK)

LOW_LIMIT
HIGH_LIMIT
UPDATE_USERNAME
UPDATE_TIMESTAMP

NOTIFICATION
NOTIFICATION_ID

QUEUE_TIMESTAMP
DELIVERY_TIMESTAMP
NEXT_DELIVERY_TIMESTAMP
DELIVERY_ATTEMPTS
DELIVERY_ATTEMPT_TIMESTAMP

DELIVERY_ADDRESS

NOTIFICATION_REQUEST_ID (FK)
SHAKECAST_USER (FK)

FACILITY_ID (FK)
DELIVERY_STATUS (FK)
GRID_VALUE_ID (FK)
EVENT_ID (FK)
EVENT_VERSION (FK)
PRODUCT_ID (FK)
METRIC_ID (FK)

FACILITY
FACILITY_ID

EXTERNAL_FACILITY_ID
FACILITY_NAME
SHORT_NAME
DESCRIPTION
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
UPDATE_USERNAME
UPDATE_TIMESTAMP

FACILITY_TYPE (FK)

GRID_VALUE
GRID_VALUE_ID

LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
VALUE_1
VALUE_2
VALUE_3
VALUE_4
VALUE_5
VALUE_6
VALUE_7
VALUE_8
VALUE_9
VALUE_10

SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)

Notification

6.4.1 FACILITY
A ShakeCast Facility is a specific structure (e.g., bridge, school, pumping station, etc.) at a spe-
cific location or a region. The location may be defined by a latitude/longitude for “point” fa-
cilities, or by a bounding box for non-point facilities. Note that the FACILITY table may be
used to define a physical facility (e.g., a freeway overpass) or a region (e.g., a county). How-
ever, when used to specify a region, the FACILITY table must express the region as a rectan-
gular bounding box.

ShakeCast System Specification

July 2004 Gatekeeper Systems 6-17

Column Datatype Description

FACILITY_ID Integer A locally-unique primary key

NAME String Name of the facility

SHORT_NAME String Abbreviated name for facility

DESCRIPTION String A free text description or comment

UPDATE_TIMESTAMP Datetime The last time this table or the ShakeMap itself was updated.

LAT_MIN Float

LAT_MAX Float

LON_MIN Float

LON_MAX Float

Bounding box of the area covered by this facility

6.4.2 NOTIFICATION_REQUEST
A ShakeCast notification event is generated for each NOTIFICATION_REQUEST where the
value in a grid cell exceeds the corresponding value in the request.

Column Datatype Description

NOTIFICATION_REQUEST_ID Integer Locally generated primary key

SHAKECAST_USER String Foreign key to the USER table, defining which
user is to be notified

FACILITY_ID Integer Foreign key to the FACILITY table. Used for fa-
cility-related notifications.

METRIC_ID Integer Foreign key to METRIC table. Defines the metric
used in the notification computation.

DAMAGE_LEVEL Integer Foreign key to the DAMAGE_LEVEL table. De-
fines the damage level used in the notification
computation.

NOTIFICATION_TYPE Integer Foreign key to NOTIFICATION_TYPE table

EVENT_TYPE Integer Foreign key to the EVENT_TYPE table. Define
the type of events to which this notification re-
quest applies. For example, some notifications
may apply only to “live” events, or just to scenar-
ios, or just to test events.

DELIVERY_METHOD Integer Foreign key to the DELIVERY_METHOD table.
Defines how the notification is to be delivered to
the user.

MESSAGE_FORMAT String Foreign key to the MESSAGE_FORMAT table.
The message format defines the layout of the
message, such as which data items are to be
included.

ShakeCast System Specification

6-18 Gatekeeper Systems July 2004

LIMIT_VALUE Float The value of this product in this cell.

METRIC_ID Integer Foreign key to METRIC table

NOTIFICATION_PRIORITY Integer Defines how this message is to be prioritized
relative to other messages also to be sent to this
user.

USER_MESSAGE String Arbitrary additional message the user wants sent
when this notification request is executed

MAX_DELIVERY_ATTEMPTS Integer Maximum number of times the notification deliv-
ery is to be attempted

AUXILIARY_SCRIPT String Name of script to run to execute this notification
request. (See [TBS] for more information on the
calling of auxiliary scripts.)

6.4.3 NOTIFICATION
The NOTIFICATION table contains all current and historical notification requests that have
been actually triggered by the ShakeCast system. The Notification table may be thought of as
the queue of notification activity (for pending notifications) or the log of activity (for historical
notifications).

Column Datatype Description

NOTIFICATION_ID Integer Locally generated primary key

NOTIFICATION_REQUEST_ID Integer Foreign key to NOTIFICATION_REQUEST table

SHAKECAST_USER String Foreign key to the USER table, defining which user
is to be notified (denormalized)

QUEUE_TIMESTAMP Datetime Time the queue entry was created

NEXT_DELIVERY_TIMESTAMP Datetime Time the queue entry is next due to be processed

DELIVERY_TIMESTAMP Datetime Time the queue entry was successfully delivered

DELIVERY_ATTEMPTS Integer The number of times delivery has been attempted
for this entry

DELIVERY_ATTEMPT_TIMESTAMP Datetime The last time delivery was attempted for this notifi-
cation entry

DELIVERY_STATUS Integer Foreign key to DELIVERY_STATUS table. Con-
tains last delivery status if delivery was attempted
(may be success or errors), or completion or can-
cellation value.

GRID_VALUE_ID Integer Foreign key to the GRID_VALUE table. Contains
the value for which this notification was triggered.

EVENT_ID Integer

EVENT_VERSION Integer

Foreign key to the EVENT table. Contains the
event for which this notification was triggered.

PRODUCT_ID Integer Foreign key to the PRODUCT table

ShakeCast System Specification

July 2004 Gatekeeper Systems 6-19

PRODUCT_VERSION Integer

DELIVERY_ADDRESS String Actual user address (e.g., email address, pager ID,
phone number, etc.) used for the message.

6.4.4 DELIVERY_STATUS
The DELIVERY_STATUS table defines the valid codes for the DELIVERY_STATUS column
of the NOTIFICATION table. Valid types are locally defined.

Column Datatype Description

DELIVERY_STATUS Integer Status code

NAME String Status code name

DESCRIPTION String Description of the meaning of this status value.

6.4.5 DAMAGE_LEVEL
The DAMAGE_LEVEL table defines the valid levels of facility damage. Valid types are typi-
cally “Green”, “Yellow”, and “Red”. Valid types are locally defined

Column Datatype Description

DAMAGE_LEVEL_ID Integer Type code for damage level, locally defined

NAME String Damage level name

SHORT_NAME String Abbreviation for damage level name

DESCRIPTION String Further descriptive information about the meaning of this
damage level code

6.4.6 MESSAGE_FORMAT
The MESSGAE_FORMAT table defines the actual text and substitution directives for the mes-
sage to be delivered. Messages may have varying lengths, be in various languages, or provide
for substitution of various kinds of event and product data.

Column Datatype Description

MESSAGE_FORMAT Integer Type code for message format, locally defined

NAME String Notification type name

SHORT_NAME String Abbreviation for notification type name

DESCRIPTION String Description

ShakeCast System Specification

6-20 Gatekeeper Systems July 2004

FORMAT_STRING String A formatted string including substitution directives for event
and product data.

TEMPLATE_FILE String Filename of a template to be used for constructing this mes-
sage.

6.4.7 FACILITY_FRAGILITY
The FACILITY_FRAGILITY table defines the facility thresholds for a facility for each fragility
level and each product metric.

Column Datatype Description

FACILITY_ID Integer Foreign key to the FACILITY table

PRODUCT_METRIC Integer Foreign key to the PRODUCT_METRIC table

FRAGILITY_LEVEL_ID Integer Foreign key to the FRAGILITY_LEVEL table

LOW_LIMIT Float Low limit of this fragility threshold at this facility

HIGH_LIMIT Float High limit of this fragility threshold at this facility

UPDATE_TIMESTAMP Float Last time this record was updated

UPDATE_USERNAME String Local username of the user who last updated this record

6.4.8 NOTIFICATION_TYPE
The NOTIFICATION_TYPE table defines the valid codes for the NOTIFICATION_TYPE col-
umn of the NOTIFICATION_REQUEST table. Valid types include “email”, “pager”, and
“script”.

Column Datatype Description

NOTIFICATION_TYPE String Type code for notification requests

NAME String Notification type name

DESCRIPTION String Additional descriptive information about this no-
tification type

MAXIMUM_DELIVERY_ATTEMPTS Integer Default value for maximum number of tries for
this type of notification

NOTIFICATION_CLASS String Grouping value for notification types

6.4.9 NOTIFICATION_CLASS
The NOTIFICATION_CLASS table defines groups or classes of NOTIFICATION_TYPES.

ShakeCast System Specification

July 2004 Gatekeeper Systems 6-21

Column Datatype Description

NOTIFICATION_CLASS String Type code for notification class

NAME String Notification class name

DESCRIPTION String Further descriptive information about the meaning of this
notification class

6.4.10 SHAKECAST_USER
The USER table has a single record for each user who is to receive a notification.

Column Datatype Description

SHAKECAST_USER String Unique identifier for each user

FULL_NAME String Full name of the user

UPDATE_TIMESTAMP Datetime Time this record was last updated

PASSWORD String Hashed password of this user in the ShakeCast server

USER_TYPE Integer Foreign key to the USER_TYPE table

EMAIL_ADDRESS String Primary email address for this user

PHONE_NUMBER String Primary phone number for this user

6.4.11 USER_TYPE
The USER_TYPE table defines the valid codes for the USER_TYPE column of the USER ta-
ble. Valid types are locally defined.

Column Datatype Description

USER_TYPE String Type code for user types

NAME String User type name

DESCRIPTION String Further description of the user type

6.5 Internal Operational Tables
A number of tables that define the operational configuration of the ShakeCast server. These
tables are documented in the following paragraphs.

ShakeCast System Specification

6-22 Gatekeeper Systems July 2004

6.5.1 Processor Parameter Table
The Daemon Parameter Table stores parameters that control the behavior of the ShakeCast
Processors such as the Exchange Processor, the Notification Processor, and the Message Proc-
essor.

Column Datatype Description

PROCESSOR_NAME String Name of the processor. Processors “know” their own name
because it is passed to them as a parameter when they are
invoked by the operating system.

PARAMETER_NAME String The name of the parameter for which the value is being de-
fined.

PARAMETER_VALUE String The value to which the parameter is to be set. Both numeric
and string values are stored as strings.

ShakeCast System Specification

July 2004 Gatekeeper Systems 7-1

Chapter 7 Notification Processing

The ShakeCast system can notify system administrators and other users when “interesting”
things happen. Notification messages are sent as SMTP (email) messages to one or more email
addresses or text pager addresses. Almost any activity of a ShakeCast server can trigger a noti-
fication action.

Obvious notification messages include:

• When a particular facility has experienced a particular level of seismic shaking
• When a seismic event of a certain magnitude occurs
• When the shaking estimate for a previous event has been updated

Less obvious notification messages include:

• When a ShakeCast server has been started or stopped
• When a ShakeCast server encounters errors communicating with another server
• When a new ShakeCast system has joined the ShakeCast network
• When a new event occurs (irrespective of the effect on facilities)
• When a user notification activity reaches the maximum number of notification attempts

without successful notification

The following sections in this Chapter describe how notification occurs in a ShakeCast Server.

7.1 Notification Processor Basics
The ShakeCast Notification Processor performs a number of basic functions on every kind of
notification. The following paragraphs describe those basic functions.

7.1.1 Initiation of the Notification Processor by the Exchange Processor
Whenever the Exchange Processor (Chapter 8, Exchange Processing) completes an exchange, it
does three things:

• The Exchange Processor writes key data to the ShakeCast Database. In the case of a new or
updated event, only the EVENT table is written. In the case of a new or updated ShakeMap

ShakeCast System Specification

7-2 Gatekeeper Systems July 2004

product, the PRODUCT table is written. Other exchange activities might write to other ta-
bles.

• The Exchange Processor may initiates further exchange processing activities to get addi-
tional information associated with the recently-exchanged item. For example, if the ex-
changed item was an event, the Exchange Processor would start a processing loop to re-
trieve ShakeMap product files related to that event. This processing continues until the
server has determined that all available supporting data has been received. (More detail on
how the Exchange Processor works is found in Chapter 8, Exchange Processing).

• Next, the Exchange Processor also wakes the Notification Processor. The Notification
Processor checks all registered notification requests to see if any new notification messages
should be queued. After the Notification Processor successfully queues messages, it in turn
wakes the Message Processor. The Message Processor continues to try to deliver messages
until they have all been delivered or until the maximum number of tries has been exceeded
for any messages that were undeliverable.

The following paragraphs describe the function of the Notification Processor and the Message
Processor.

7.1.2 Notification Processor Environment
The ShakeCast Notification Processor runs as a separate process, independent of the Exchange
Processor. The use of a separate process provides a degree of insulation from the scheduling
issues associated with the Exchange Processor. Also, the Exchange Processor runs in the con-
text of the Apache CGI environment, but the Notification Processor is a separate daemon (or
service) and runs even if the CGI environment is busy or impacted by communication problems.

On most systems, the Notification Processor also runs at a higher scheduler priority than the
Exchange Processor. Notifications are the important end goal of the ShakeCast System, and so
it is appropriate that these activities take precedence over retrieving or sending additional data.

7.1.3 The Notification Request Table
The Notification Request table is the hub of the notification process. Each notification that a
user requests is recorded as an entry in this table.

Users enter Notification Requests by filling in a Web-based form. The ShakeCast System also
creates some Notification Requests as part of the installation and configuration process. The
Notification Request table structure is shown in the following figure:

NOTIFICATION_REQUEST Table Structure

Column Datatype Description

NOTIFICATION_REQUEST_ID Integer Locally generated primary key

GRID_CELL_ID Integer Grid cell to use for the computation

NOTIFICATION_TYPE Integer Foreign key to NOTIFICATION_TYPE table

LIMIT_VALUE Float The value of this product in this cell.

ShakeCast System Specification

July 2004 Gatekeeper Systems 7-3

METRIC_ID Integer Foreign key to METRIC table

EVENT_TYPE Integer Foreign key to the EVENT_TYPE table

SHAKECAST_USER String Foreign key to the USER table, defining which
user is to be notified

USER_MESSAGE String Arbitrary additional message the user wants sent
when this notification request is executed

MAX_TRIES Integer Maximum number of times the delivery is to be
attempted

AUXILIARY_SCRIPT String Name of script to run to execute this notification
request. (See [TBS] for more information on the
calling of auxiliary scripts.)

When the Notification Processor starts up, it uses the data in the Notification Request table to
decide what needs to be done. There are three basic ways the Processor uses the Notification
Request table:

• If the Processor was instructed to perform a particular type of notification, the Processor
checks just that single type of notification in the Notification Request table. It will limit the
SQL query against the table to just that single type of notification request.

• The Notification Processor may also be instructed to check for notifications related to a spe-
cific data instance. For example, the Processor may be instructed to check for notifications
that are related to a specific event, to a specific ShakeCast data product, or to a specific fa-
cility.

• If the Processor received no specific instructions to limit the requests, then the Processor
uses an SQL query that will check every notification request in the
NOTIFICATION_REQUEST table.

All of the above queries can be satisfied by inspecting the NOTIFICATION_REQUEST table
and a few related tables. This is why the NOTIFICATION_REQUEST table can be thought of
as the center of the ShakeCast notification process.

7.1.4 Simple Event Notification
The following paragraphs will use as an example the particular case of notifying users about
new Events. Similar scenarios can be drawn for other kinds of notifications, such as shaking at
a facility or ShakeCast Server activity. These other scenarios will be expanded upon later.

For example, if the Notification Processor is instructed to notify users about new events only, it
will query the Notification Request table with SQL that looks something like this:

select * from NOTIFICATION_REQUEST where NOTIFICATION_TYPE=3

where the type code “3” indicates EVENT notifications.

As the Processor reads notification requests, each kind of request is joined with the data that
triggers that request. For example, if the user requests to be notified when a new event arrives,
the Exchange Processor would trigger the Notification Processor with the specific event ID
(say, event 12345), and the Notification Processor would issue SQL something like this:

ShakeCast System Specification

7-4 Gatekeeper Systems July 2004

select * from
NOTIFICATION_REQUEST NR,
EVENT E,

where
NR.NOTIFICATION_TYPE=3 and
E.EVENT_ID = 12345

Generally, users do not want to be notified of every single event. Let’s consider a user who
wants to only be notified when the event has a Richter magnitude greater than 5.0 and is located
in the Los Angeles area. To specify this notification, the user will provide values for the
LIMIT_VALUE and bounding box columns of the FACILITY table. The above query then be-
comes:

select * from
NOTIFICATION_REQUEST NR,
EVENT E,
FACILITY F

where
NR.NOTIFICATION_TYPE=3 and
E.EVENT_ID = 12345 and
E.RICHTER_MAGNITUDE >= NR.LIMIT_VALUE and
NR.FACILITY_ID = F.FACILITY_ID and
E.LAT between F.LAT_MIN and F.LAT_MAX and
E.LON between F.LON_MIN and F.LON_MAX

The actual SELECT statement issued by the Notification Processor is somewhat more compli-
cated than that indicated above. The Processor must handle a variety of cases, such as when the
Event magnitude is null (not specified), or the user provided no limit value, or the user provided
no bounding box, or the location of the event is not known, or some combination of these situa-
tions. However, these situations are simply extensions of the basic idea shown above.

Similar SELECT statements can be created for each of the kinds of notifications supported by
ShakeCast. Each of these will be described in further detail later in this Chapter.

7.1.5 The Notification Queue Table
The Notification Processor does not simply retrieve the notification records as is shown in the
SQL Select statement used above. Instead, the Processor stores the results of the join operation
in the Notification Queue table. Whereas the Notification Request table records the user’s re-
quests for notification, the Notification Queue is a record of all the specific notification activi-
ties that the ShakeCast Server has attempted to perform. The Notification Queue table structure
is shown in the following figure:

NOTIFICATION Table Structure

Column Datatype Description

NOTIFICATION_ID Integer Locally generated primary key

NOTIFICATION_REQUEST_ID Integer Foreign key to NOTIFICATION_REQUEST table

SHAKECAST_USER String Foreign key to the USER table, defining which user is to
be notified (denormalized)

ShakeCast System Specification

July 2004 Gatekeeper Systems 7-5

QUEUE_TIMESTAMP Datetime Time the queue entry was created

SCHEDULED_TIMESTAMP Datetime Time the queue entry is next due to be processed

DELIVERY_TIMESTAMP Datetime Time the queue entry was successfully delivered

DELIVERY_STATUS Integer Foreign key to DELIVERY_STATUS table. Contains
last delivery status if delivery was attempted (may be
success or errors), or completion or cancellation value.

TRIES Integer Number of times the delivery was attempted

GRID_VALUE_ID Integer Foreign key to the GRID_VALUE table

FACILITY_ID Integer Foreign key to the FACILITY table

EVENT_ID Integer Foreign key to the EVENT table

As the Notification Processor finds notification requests that are to be processed, it makes an
entry in the NOTIFICATION table. Returning to the example in the previous section, the SQL
Select statement becomes an SQL Insert statement, as below:

insert into NOTIFICATION
(NOTIFICATION_REQUEST_ID, SHAKECAST_USER, QUEUE_TIMESTAMP,
EVENT_ID, FACILITY_ID)

select NOTIFICATION_REQUEST_ID, SHAKECAST_USER, NOW(),
EVENT_ID, FACILITY_ID

from
NOTIFICATION_REQUEST NR,
EVENT E,
FACILITY F

where
NR.NOTIFICATION_TYPE=3 and
E.EVENT_ID = 12345 and
E.RICHTER_MAGNITUDE >= NR.LIMIT_VALUE and
NR.FACILITY_ID = F.FACILITY_ID and
E.LAT between F.LAT_MIN and F.LAT_MAX and
E.LON between F.LON_MIN and F.LON_MAX

Other columns of the NOTIFICATION table are filled in automatically by the database or the
processor. For example, the NOTIFICATION_ID is automatically created, and the
DELIVERY_STATUS is set to the initial value of “QUEUED”.

One further refinement is required before the above query form is used by the Notification
Processor. The statement shown above will create a new entry on the Notification Queue for
every matching Notification Request, every time the statement is executed. However, we do
not want to issue a notification request if there is already a request outstanding for this event.
Therefore, we want to limit the query with a further predicate:

insert into NOTIFICATION
(NOTIFICATION_REQUEST_ID, SHAKECAST_USER, QUEUE_TIMESTAMP, EVENT_ID,
FACILITY_ID)
select NOTIFICATION_REQUEST_ID, SHAKECAST_USER, NOW(), EVENT_ID,
FACILITY_ID
from

NOTIFICATION_REQUEST NR,
EVENT E,
FACILITY F

ShakeCast System Specification

7-6 Gatekeeper Systems July 2004

where
NR.NOTIFICATION_TYPE=3 and
E.EVENT_ID = 12345 and
E.RICHTER_MAGNITUDE >= NR.LIMIT_VALUE and
NR.FACILITY_ID = F.FACILITY_ID and
E.LAT between F.LAT_MIN and F.LAT_MAX and
E.LON between F.LON_MIN and F.LON_MAX and
not exists (select * from NOTIFICATION N where

N.NOTIFICATION_REQUEST_ID =
NR.NOTIFICATION_REQUEST_ID and

N.EVENT_ID = E.EVENT_ID)

The not exists predicate will prevent the Notification Processor from inserting queue items
that match items that already exist. Further refinements on this idea are described later.

7.2 Message Delivery Processor
Once messages are in the NOTIFICATION, the Notification Processor “wakes up” the Message
Delivery Processor. This Processor, which also runs in a process context separate from both the
Notification Processor and the Exchange Processor, runs essentially continuously. The Mes-
sage Processor attempts to deliver messages in the NOTIFICATION table.

The Notification Processor does not need to tell the Message Processor the specifics of what it
needs to do. It simply wakes the Message Processor. Each time it runs, the Message Processor
always tries to deliver every undelivered message in the Notification Queue.

7.2.1 Selecting Messages to Send
To determine which messages need to be sent, the Message Processor uses a basic SQL Select
statement similar to this one:

select *
from

NOTIFICATION N,
NOTIFICATION_REQUEST NR,
SHAKECAST_USER U

where
N.NOTIFICATION_REQUEST_ID = NR.NOTIFICATION_REQUEST_ID and
N.SHAKECAST_USER = U.SHAKECAST_USER and
N.NEXT_DELIVERY_TS <= now() and
N.DELIVERY_STATUS = 1 /* Delivery pending */

order by
N.SHAKECAST_USER

7.2.2 Message Aggregation
The Message Delivery Processor loops over every record returned by the above SQL statement.
Messages to the same user for the same facility are grouped together. For example, if a single
facility exceeds the shaking limits for four separate shaking metrics, the Message Processor ag-
gregates those four entries in the NOTIFICATION into a single message. This process is
termed Message Aggregation.

[more on message aggregation tbs]

ShakeCast System Specification

July 2004 Gatekeeper Systems 7-7

7.2.3 Completion of Notification Queue Entries
The Processor then attempts to deliver the message. As each message is delivered, the proces-
sor updates the columns in the NOTIFICATION table for each component of the delivered mes-
sage, as shown below.

Message Processor Updates to NOTIFICATION

Column Description

SCHEDULED_TIMESTAMP If the delivery fails, this column is updated with the time when the
delivery should be re-tried. Parameters in the ShakeCast configu-
ration tables determine how rapidly failed deliveries are resched-
uled. The general algorithm is that the delivery is attempted several
times in rapid succession. If all those tries fail, the Processor then
starts to decay the retry time by doubling the time between retries.
Eventually, the retry time reaches a maximum time between tries,
and the Processor continues to retry delivery with the maximum
delay until the maximum number of notification attempts is reached.
The maximum number of notification attempts is defined for each
NOTIFICATION_TYPE. (Reports of ShakeCast Server errors, for
example, retry essentially without bound.)

DELIVERY_TIMESTAMP If the message is successfully delivered, this column is updated with
the time the delivery succeeded.

ATTEMPT_TIMESTAMP The time the delivery was last attempted.

DELIVERY_STATUS The Message Processor sets this status value to SUCCESS when
the delivery completes successfully. It is set to FAILURE when a
delivery attempt fails. The status may also be set to CANCELLED
by an administrator via a maintenance web page.

DELIVERY_ATTEMPTS This number is incremented on each delivery attempt.

7.2.4 Iterative Message Processing
Each time the Message Processor completes a loop through all the current message records, it
repeats the process, again setting the query predicate N.NEXT_DELIVERY_TIMESTAMP <= now().
If no records are returned (all the delivery times are in the future), the Message Processor tries
to determine how long to wait. It does this using the following SQL query:

select min (NEXT_DELIVERY_TIMESTAMP)
from

NOTIFICATION N
where

N.DELIVERY_STATUS = 1 /* Delivery pending */

The Message Processor compares the Next Delivery Time with the maximum wait time set in
the system configuration, and waits until whichever time is earliest. It then wakes itself when
that time arrives, and repeats the process.

Note that the Message Processor attempts to deliver all outstanding messages that have reached
their assigned scheduled time, every time it sweeps the Notification Queue. It attempts delivery

ShakeCast System Specification

7-8 Gatekeeper Systems July 2004

in Priority order, but it will try even low priority messages before it re-attempts delivery of
higher priority messages. Although messages may take only a second or two to deliver, there
are a variety of message delivery failure modes where it can take many seconds to detect that a
message is undeliverable. Therefore, it is important that exceedingly large numbers of undeliv-
ered and undeliverable messages not be allowed to build up in the Notification Queue. The
MAXIMUM_NOTIFICATION_ATTEMPTS column of the NOTIFICATION_TYPE table and
the other system configuration parameters that control the delivery of messages should therefore
be adjusted only with some degree of caution.

7.3 Notification Signup Web Page
[tbs]

7.4 Event Notification
When a ShakeCast Event is received by the Exchange Processor, the Exchange Processor com-
pletes the current exchange and then wakes the Notification Processor. The message to wake
the Notification Processor includes all Notification Types that are in the Event Notification
Class. The Notification Processor then executes a series of SQL statements that relate the
EVENT table and the NOTIFICATION_REQUEST table, of the form:

insert into NOTIFICATION
(NOTIFICATION_REQUEST_ID, SHAKECAST_USER, QUEUE_TIMESTAMP,

EVENT_ID)
select NOTIFICATION_REQUEST_ID, SHAKECAST_USER, NOW(), EVENT_ID
from

NOTIFICATION_REQUEST NR,
EVENT E,
NOTIFICATION_TYPE NT

where
NR.NOTIFICATION_TYPE = NT.NOTIFICATION_TYPE and
NT.NOTIFICATION_CLASS = 1 and /*Event Class*/
E.EVENT_ID = <eid> and
not exists (select * from NOTIFICATION N where

N.NOTIFICATION_REQUEST_ID = NR.NOTIFICATION_REQUEST_ID and
N.EVENT_ID = E.EVENT_ID and
N.DELIVERY_STATUS = 1 /*Pending*/
) and

<further predicates>

The various combinations of further predicates are listed in the following table, and may all be
ORed together in a single SQL Where Clause.

Event Notification Query Predicates

Predicate Description

NR.LIMIT_VALUE is null and
F.FACILITY_ID = NR.FACILITY_ID and
E.LAT between F.LAT_MIN and
F.LAT_MAX and E.LON between
F.LON_MIN and F.LON_MAX

A limit is not specified, but a facility is specified, and
the specified facility’s bounding box overlaps the lo-
cation of the event. Note that a facility in this case
actually represents a region such as a utility service
area, not a physical facility like a reservoir.

ShakeCast System Specification

July 2004 Gatekeeper Systems 7-9

NR.FACILITY_ID is null and
NR.LIMIT_VALUE is not null and
E.MAGNITUDE >= NR.LIMIT_VALUE

No facility (location) is provided, but the event mag-
nitude exceeds the requested limit. The limit value
must not be null in this case. Users can use this
case to receive notification of every event, irrespec-
tive of the event’s location.

NR.LIMIT_VALUE is not null and
NR.FACILITY_ID is not null and
E.MAGNITUDE >= NR.LIMIT_VALUE
E.LAT between F.LAT_MIN and
F.LAT_MAX and E.LON between
F.LON_MIN and F.LON_MAX

A limit is defined and the facility is defined, and the
magnitude of the event exceeds the defined limit,
and the event is within the defined bounding box.

7.5 Product Notification
When a ShakeCast Product is received by the Exchange Processor, the Exchange Processor
completes the current exchange and then wakes the Notification Processor. The message to
wake the Notification Processor includes all Notification Types that are in the Product Notifica-
tion Class. The Notification Processor then executes a series of SQL statements that relate the
PRODUCT table and the NOTIFICATION_REQUEST table.

7.5.1 Product Notification Without Facility
This type of Notification Request is used when the user wants to be notified whenever a
ShakeMap Product is created that reports values above a predetermined limit, irrespective of the
location covered by the ShakeMap.

In some cases, the user will want to be notified whenever products of a certain type arrive, or
when those Product records report maximum values (for their respective Metric) above a speci-
fied limit. The following SQL statement is used in this case:

insert into NOTIFICATION
(NOTIFICATION_REQUEST_ID, SHAKECAST_USER, QUEUE_TIMESTAMP, EVENT_ID,
PRODUCT_ID)
select NOTIFICATION_REQUEST_ID, SHAKECAST_USER, NOW(), EVENT_ID,
PRODUCT_ID
from

NOTIFICATION_REQUEST NR,
PRODUCT P,
NOTIFICATION_TYPE NT

where
NR.NOTIFICATION_TYPE = NT.NOTIFICATION_TYPE and
NT.NOTIFICATION_CLASS = 2 and /*Product Class*/
P.PRODUCT_ID = <pid> and
NR.METRIC_ID = P.METRIC_ID and
((NR.LIMIT_VALUE is null) or (NR.LIMIT_VALUE < P.MAX_VALUE))
not exists (select * from NOTIFICATION N where

N.NOTIFICATION_REQUEST_ID =
NR.NOTIFICATION_REQUEST_ID and

N.PRODUCT_ID = P.PRODUCT_ID and
N.DELIVERY_STATUS=1 /*Pending*/)

ShakeCast System Specification

7-10 Gatekeeper Systems July 2004

7.5.2 Product Notification With Facility
This type of Notification Request is used when the user wants to be notified whenever a
ShakeMap Product is created that overlaps one or more Facilities of interest, without regard to
the level of shaking that might actually have occurred in the immediate vicinity of the Facility.

When the user also specifies a Facility in the Notification Request, the SQL executed by the
must include a comparison of the bounding box of the Facility and the bounding box of the
Product. To include a comparison of the Facility, the above SQL statement is extended to in-
clude a reference to the FACILITY table and a predicate based on the bounding box of the Fa-
cility and the bounding box of the Product.

insert into NOTIFICATION
(NOTIFICATION_REQUEST_ID, SHAKECAST_USER, QUEUE_TIMESTAMP, EVENT_ID,
PRODUCT_ID)
select NOTIFICATION_REQUEST_ID, SHAKECAST_USER, NOW(), EVENT_ID,
PRODUCT_ID
from

NOTIFICATION_REQUEST NR,
PRODUCT P,
NOTIFICATION_TYPE NT,
FACILITY F

where
NR.NOTIFICATION_TYPE = NT.NOTIFICATION_TYPE and
NT.NOTIFICATION_CLASS = 2 and /*Product Class*/
P.PRODUCT_ID = <pid> and
NR.METRIC_ID = P.METRIC_ID and
((NR.LIMIT_VALUE is null) or (NR.LIMIT_VALUE < P.MAX_VALUE)) and
not ((F.LON_MAX < P.LON_MIN) or (P.LON_MAX < F.LON_MIN) or

(F.LAT_MAX < P.LAT_MIN) or (P.LAT_MAX < F.LAT_MIN)) and
not exists (select * from NOTIFICATION N where

N.NOTIFICATION_REQUEST_ID =
NR.NOTIFICATION_REQUEST_ID and

N.PRODUCT_ID = P.PRODUCT_ID and
N.DELIVERY_STATUS=1 /*Pending*/)

7.6 Grid Notification
When a ShakeCast Product that includes a Grid is received by the Exchange Processor, the Ex-
change Processor completes the Grid Data Exchange and then wakes the Notification Processor.
The message to wake the Notification Processor includes all Notification Types that are in the
Grid Notification Class.

Grid Notification Requests are designed to generate Notification Queue entries based on the
value of a particular metric at a particular location (one or more grid cells). The Grid Cells in-
volved in the comparison are located by their overlap with a Facility. Therefore, a Facility
(with a locating bounding box) is required for a Grid Notification Request.

Grid Notification Requests are of two sub-forms:

• The user may specify a limit value in the Notification Request. When the value of the met-
ric exceeds the limit value for any Grid Cell that overlaps the Facility, then the Notification
Request is matched.

ShakeCast System Specification

July 2004 Gatekeeper Systems 7-11

• The user may instead specify a Damage Level. The Damage Level is used together with
estimates of the “fragility” of the facility (resistance to shaking). When the Shaking esti-
mated at any Grid Cell associated with the Facility exceeds the limit associated with the
specific Damage Level for that facility, then the Notification Request is matched.

Each of these kinds of Grid Notification Requests is described below.

7.6.1 Outstanding Grid Notification Records
To start the process of creating new Notification Queue entries, the Notification Processor finds
existing notifications for this User on this Facility. These may be notifications that are any cur-
rently outstanding or have already been completed. These existing notifications will be used
later to filter the new notifications, so that multiple notifications are not issued for a particular
user for a particular facility, unless the new notification suggests a higher Damage Level esti-
mate than the previous notification.

The following query is used to identify potential existing notification activity in the Notification
Queue.

select
NOTIFICATION_REQUEST_ID, SHAKECAST_USER, QUEUE_TIMESTAMP,
EVENT_ID, PRODUCT_ID, MAX_VALUE

from NOTIFICATION N,
PRODUCT P

where DELIVERY_STATUS = 1 and /*Pending delivery*/
N.METRIC = P.METRIC

New notification entries will not be created that match the above entries. Instead, the existing
entries will be modified with additional data from the new entries.

7.6.2 First Level Filter on Product Maximum Value
The Notification Processor next executes an SQL query that relates the PRODUCT table, the
FACILITY_FRAGILITY table, the FACILITY table, and the NOTIFICATION_REQUEST
table. This statement is a first level filter that identifies any NOTIFICATION_REQUEST re-
cords that might possibly be triggered by this Product. The query predicate is based on the
comparison of the column PRODUCT.MAX_VALUE to the low-limit and high-limit values of
the FACILITY_FRAGILITY table. It also filters records based on the comparison between the
bounding box of the PRODUCT and the bounding box or location of the FACILITY.

select NOTIFICATION_REQUEST_ID
from NOTIFICATION_REQUEST NR,

FACILITY F,
FACILITY_FRAGILITY FF,
PRODUCT P

where P.PRODUCT_ID = <pid> and
P.PRODUCT_VERSION = <version>
NR.NOTIFICATION_TYPE = NT.NOTIFICATION_TYPE and
NT.NOTIFICATION_CLASS = 3 and /*Grid Class*/
P.METRIC_ID = NR.METRIC_ID and P.METRIC_ID = FF.METRIC_ID and
NR.DAMAGE_LEVEL_ID = FF.DAMAGE_LEVEL_ID and
NR.FACILITY_ID = F.FACILITY_ID and
NR.FACILITY_ID = FF.FACILITY_ID and
(P.MAX_VALUE between FF.LOW_LIMIT and FF.HIGH_LIMIT or

ShakeCast System Specification

7-12 Gatekeeper Systems July 2004

 (P.MAX_VALUE >= FF.LOW_LIMIT and FF.HIGH_LIMIT is null)) and
not ((F.LON_MAX < P.LON_MIN) or (P.LON_MAX < F.LON_MIN) or

(F.LAT_MAX < P.LAT_MIN) or (P.LAT_MAX < F.LAT_MIN))

The above query can be executed fairly quickly. It returns all the possible Notification Requests
that may be triggered by the given product. However, it also returns false positive Notification
Requests: requests that might have been triggered based on the coarse maximum value given in
the PRODUCT record, but that are not actually requested when the higher-resolution
GRID_VALUE table is also examined.

7.6.3 Fine Granularity Notification Request Processing
Using the list of request IDs returned from the previously-defined coarse filter, the Notification
Processor next examines the Grid Values themselves, and compares these values to the limits
set in the FACILITY_FRAGILITY table.

select
NOTIFICATION_REQUEST_ID, SHAKECAST_USER, NOW(),
EVENT_ID, PRODUCT_ID, MAX(GV.VALUE)

from
NOTIFICATION_REQUEST NR,
GRID_VALUE GV,
GRID_CELL GC,
FACILITY_FRAGILITY FF

where
NR.NOTIFICATION_REQUEST_ID in (first-level-list) and
GV.PRODUCT_ID = <pid> and
GV.PRODUCT_VERSION = <version> and
GV.GRID_ID = GC.GRID_ID and
NR.METRIC_ID = FF.METRIC_ID and
NR.METRIC_ID = GV.METRIC_ID and
FF.METRIC_ID = GV.METRIC_ID and /*reflexive (redundant)*/
FF.DAMAGE_LEVEL_ID = NR.DAMAGE_LEVEL_ID and
F.FACILITY_ID = NR.FACILITY_ID and
((GV.VALUE between FF.LOW_LIMIT and FF.HIGH_LIMIT) or
 (GV.VALUE >= FF.LOW_LIMIT and FF.HIGH_LIMIT is null)) and
(not ((F.LON_MAX < GC.LON_MIN) or (GC.LON_MAX < F.LON_MIN) or

(F.LAT_MAX < GC.LAT_MIN) or (GC.LAT_MAX < F.LAT_MIN))
group by

NOTIFICATION_REQUEST_ID, SHAKECAST_USER, EVENT_ID, PRODUCT_ID

The above query also compares the Grid Cell bounding box with the Facility bounding box, and
includes only Grid Values for Grid Cells that overlap with the Facility in the Notification Re-
quest.

7.7 Metadata Update Notification
A ShakeCast Server depends on a great many different kinds of metadata (data about data):

• Data about the various ShakeMap product metrics that are available
• Data about the various ShakeMap product formats that are available
• Data about system usage

ShakeCast System Specification

July 2004 Gatekeeper Systems 7-13

The ShakeCast System Administrator can configure the ShakeCast server to automatically poll
other servers for these various metadata elements, and automatically post this information to the
server. As part of the Exchange Processing that takes place to retrieve this data, the ShakeCast
scripts also post entries to the Notification Request Queue so that administrators can be notified
of the changes that have been made. These notification requests are created using an SQL
statement similar to the following:

insert into NOTIFICATION
(NOTIFICATION_REQUEST_ID, SHAKECAST_USER, QUEUE_TIMESTAMP, URL)

select
NOTIFICATION_REQUEST_ID, SHAKECAST_USER, NOW(), ‘<url>’

from NOTIFICATION_REQUEST NR
where NOTIFICATION_TYPE=5 /*Metadata change notification type*/

The URL in the above statement is provided by the Exchange Processor when the queue entry is
written, and is usually a pointer to a ShakeCast report page that describes the new metadata.

[more tbs]

7.8 Registration and New System Notification
The ability to make critical ShakeCast system configuration changes with a minimum of effort
is an essential component of the “set it and forget it” nature of the ShakeCast System. A
ShakeCast server is not a standalone computer system. Even if your ShakeCast Server is never
changed, it is awash in a sea of changes in the ShakeCast network as new servers are added, old
servers stop working, and new types of ShakeMaps are created. The functions described in this
Chapter make it possible for a system administrator to take maintain a ShakeCast system with-
out ever taking any pro-active steps. Instead of the administrator having to know “what to do”,
the ShakeCast system is designed to run unattended, and ask the administrator for “approval” in
those few cases where approval is needed before a configuration change is applied.

New ShakeCast servers can be added to the ShakeCast network with minimal intervention by an
administrators at all the many machines in the network. In addition, new connections can be
created between existing ShakeCast servers, allowing information to flow between these ma-
chines. These two processes are described in the following paragraphs.

7.8.1 System Registration and Notification
When the ShakeCast software is installed, as one of the final steps in the configuration process
the server registers itself with at least one upstream ShakeCast machine. This is accomplished
by issuing a register request to the upstream server (see Section Chapter 3, ShakeCast Re-
quests and Section 2.4, Upstream and Downstream ShakeCast Machines).

The upstream server logs information about the registering server in the SERVER table of the
ShakeCast database. However, the new server is not automatically enabled for data exchanges.
Instead, the register request places entries in the Notification Queue so that New System No-
tification messages are delivered to system administrators.

The Register Request uses an SQL query like the following to generate New System Notifica-
tion Requests.

insert into NOTIFICATION

ShakeCast System Specification

7-14 Gatekeeper Systems July 2004

(NOTIFICATION_REQUEST_ID, SHAKECAST_USER, QUEUE_TIMESTAMP, URL)
select

NOTIFICATION_REQUEST_ID, SHAKECAST_USER, NOW(), ‘<url>’
from NOTIFICATION_REQUEST NR
where NOTIFICATION_TYPE=4 /*System registration request*/

The URL argument in the above query is constructed by the register request, and consists of
a pointer to administrative CGI script approve_registration_request. This URL is formed
as follows:

/sc/admin/approve_registration_request?system_id=<sid>

The function of this request is described in Section 7.8.3 Approving Registration Requests.

7.8.2 Registering Other New Systems
ShakeCast servers can learn about other systems in the network in two other ways:

• Another server already known to our ShakeCast Server can “push” new server information
toward our server.

• Our server can “poll” other servers, periodically asking about new servers that have joined
the network and that may require service from us.

When a server already known to ours wants to inform us of a new server, it does this by issuing
a new_server request. This request is processed in the context of an Exchange (Chapter 8,
Exchange Processing), and updates the ShakeCast database with information about the new
server. When the Exchange is complete and the database has been updated, the Exchange Proc-
essor writes a Notification Request Queue entry to inform the system administrator about the
new system, and then wakes the Message Processor to deliver that request to the system admin-
istrator.

Similarly, a ShakeCast System Administrator can configure his system to poll all adjacent (con-
nected) servers and request a list of servers that offer download service. This is achieved by
executing the get_system_list request (see Chapter 3, ShakeCast Requests). When the ex-
change initiated by the get_system_list request is completed and the database has been up-
dated, the Exchange Processor writes a Notification Request Queue entry to inform the system
administrator about the new system, and then wakes the Message Processor to deliver that re-
quest to the system administrator.

7.8.3 Approving Registration Requests
Both the New System Registration process and the New Server request result in a new server
being added to the ShakeCast database. Before the new system is activated, however, the
ShakeCast System Administrator must invoke the approve_registration_request script via
a Web page.

The approve_registration_request script performs the following functions.

• Check that the user invoking the script is registered in the SHAKECAST_USER database
with a User Type of “Administrator”.

ShakeCast System Specification

July 2004 Gatekeeper Systems 7-15

• Generate a Web page presenting the configuration information for the server that has re-
quested registration:

• Server name, address, organization, and so on

• Version of the ShakeCast software the system is running

• The Administrative Contact Information for the server’s administer, as defined in the
System XML that is exchanged between the two servers.

• A hash value representing the current state of this server’s record in the ShakeCast data-
base. This value will be sent back to the server with the update request.

• The generated page also has a series of checkboxes for the administrator to use to configure
the characteristics of the new server.

• When the administrator approves the request, the same script is invoked again, this time in-
structing the script to apply the changes to the ShakeCast Database.

7.9 ShakeCast System Activity Notification
ShakeCast can be configured to notify System Administrators or others when a variety of im-
portant system events or system activity occur. System Administrators (or other users) request
notification on the ShakeCast Notification Signup Web Page (see Section 7.3, Notification
Signup Web Page).

The kinds of events and activity that can trigger notification are summarized in the following
table.

System Activity Notification Types

Class Activity Description

System Restart The ShakeCast System has been restarted

Communication Error
Limit Reached

A ShakeCast partner system has encountered communica-
tion errors exceeding the limit set in the ShakeCast Data-
base SERVER table.

Delivery Attempts Limit
Reached

A ShakeCast message could not be delivered because the
maximum number of delivery attempts was reached.

Error

Self-Test Failed The ShakeCast System failed some or all of the ShakeCast
Self-Test

Configuration New Server Added A new ShakeCast Server has been added to the list of
servers known to this server.

Daily Usage Report A report summarizing of the number of email messages
sent and web pages viewed today.

Daily Exchange Report A report summarizing of the number of ShakeCast Ex-
changes completed today.

Usage

Monthly Usage Report A report summarizing of the number of email messages
sent and web pages viewed this month.

ShakeCast System Specification

7-16 Gatekeeper Systems July 2004

Monthly Exchange Re-
port

A report summarizing of the number of ShakeCast Ex-
changes completed this month.

User Summary A report summarizing of the number of ShakeCast users by
user type, user organization (department), and activity or
usage level.

The following sections describe each of these notification mechanisms in more detail.

7.9.1 Error Notification
[tbs]

7.9.1.1 System Restart

[tbs]

7.9.1.2 Communication Error Limit

[tbs]

7.9.1.3 Delivery Attempts Limit

[tbs]

7.9.2 System Configuration Notification
[tbs]

7.9.2.1 New System Added

[tbs]

7.9.3 Usage Notification
[tbs]

7.9.3.1 Daily and Monthly Usage Report

[tbs]

7.9.3.2 Daily and Monthly Exchange Report

[tbs]

7.9.3.3 User Summary Report

[tbs]

ShakeCast System Specification

July 2004 Gatekeeper Systems 8-1

Chapter 8 Exchange Processing

A ShakeCast Exchange is the process of moving data or metadata from one ShakeCast Server to
another. An Exchange can be performed when an upstream ShakeCast server sends unsolicited
data to a downstream server, or when a downstream server “polls” or requests data from an up-
stream server. Some exchanges are combinations of these two styles of communication; an up-
stream server sends a brief notification to a downstream server, which then “decides” whether
or not it needs additional data, and, if it does, makes a request for that information.

A ShakeCast Exchange may move data (for example, a ShakeMap Grid), or it may move meta-
data (for example, a Product Format XML file containing information about new ShakeMap
product formats). The exchange process for these two kinds of exchange are described sepa-
rately below.

The following sections in this Chapter describe the methods that ShakeCast Servers use to ac-
complish these data exchanges.

8.1 Creating and Updating ShakeCast Databases
In ShakeCast, all requests to exchange data are idempotent. That is, a request can be repeated
any number of times and, as long as the data in the request is identical, the resulting database is
the same as if the request had been issued only once. For example, a new ShakeCast event is
created by the new_event request. A ShakeCast Server can receive the new_event request
several times, from the same server and/or other severs, and the server will define the event in
the ShakeCast Database only one time; it will not define a different event for each time the re-
quest was received.

In conjunction with the idempotent nature of ShakeCast requests is a principle of “last update
wins”. If a ShakeCast Server receives two requests, and the data in the requests is in conflict,
then the latest request to arrive controls the value that is stored in the ShakeCast Database. For
example, if a new_event request arrives and defines Event 1234 to be at the location
“34.147689:-118.128808”, but a subsequent request defines the same event at location
“34.335439:-118.506447”, then the second value is the value retained in the ShakeCast data-
base.

ShakeCast System Specification

8-2 Gatekeeper Systems July 2004

8.2 The ShakeCast Exchange Log
Every request that exchanges data is also recorded in the ShakeCast Exchange Log of both the
upstream server and the downstream server. The Exchange log is a time-indexed record of all
exchanges, and is stored as the EXCHANGE_LOG table in the ShakeCast Database. The Ex-
change Log contains the following data:

Exchange Log

Column Description

EXCHANGE_TIMESTAMP The time (GMT, from the local system’s clock) that the exchange was
completed.

SERVER_ID The globally unique system ID of the ShakeCast Server on the other side
of the exchange.

EXCHANGE_TYPE The type of exchange that took place. Values include “Metadata”, “Data”,
and “Data File”.

EXCHANGE_ACTION For the downstream server, the action taken as a result of the values
given in the exchange. The action may be “Insert”, “Update”, “Rejected
due to errors”, or “No change required”.

8.3 Metadata Exchanges
The ShakeCast System provides a mechanism to update all the Servers in the network with
ShakeCast metadata. For example, when the ShakeMap developers create a new kind of
ShakeMap Metric, this information needs to be distributed to all the servers in the network. By
entering a new Metric in the database, users can begin to define Facility Fragilities that are
based on that product. Or, the ShakeMap developers may decide that a new Event Status value
is required to handle a new kind of test event that has been created.

All ShakeCast Servers accept metadata updates. These updates insert or update new values in
the ShakeCast database tables.

Metadata Exchanges always occur via the exchange of a metadata XML file. The Metadata
XML format provides for the following data items.

Metadata XML

Data Item Description

Table Name The name of the table that is to be updated.

Primary Key Value The value of the primary key in that table that is to be inserted or updated.

Column Value Pairs An array of column-value pairs. On insert, each of the columns listed is set
to the value given. On update, only the listed columns are updated; the
values of unnamed columns in the database are not changed.

ShakeCast System Specification

July 2004 Gatekeeper Systems 8-3

Since the Metadata XML format can describe any relational table, it can be used to update any
of the ShakeCast metadata such as Product Format, Metric, Event Status, and so on. Refer to
Section5.7, ShakeCast Metadata XML, for the details of the Metadata XML format.

To update ShakeCast Metadata, the upstream server creates (or retrieves) XML describing the
update to be performed. The downstream server then reads that XML and performs the update.

[more tbs]

8.4 Data Exchanges
When a ShakeCast Server processes a request to store data in the ShakeCast Database, the re-
quest processor must perform a number of steps before writing the data to the ShakeCast data-
base. It does this using the following algorithm:

• Check first to see if the object defined in the request is already in the database. If it is, then
the subsequent operations are SQL Updates instead of SQL Inserts. The object is located by
the primary key column only; if the primary key (which much be supplied as a request pa-
rameter) is matched in the database, then the matched record is updated. If the primary key
is not matched, then the request is treated as defining a new record.

• The parameters are matched to database table columns using code and logic that is unique to
the code in each request processor.

• Depending on the particular request, the script may apply various validity tests against the
data.

• The record is then update or inserted.

• If the update or insert fails for any reason (for example, because a database constraint is
violated, or because a validity test failed), then the script writes the error message into a
ShakeCast Status XML message and returns without updating the database. If the update
succeeds, then the script writes a success message into the ShakeCast Status XML and
commits the changes to the database.

Data is exchanged between ShakeCast Servers in two ways:

• As parameters to ShakeCast Requests
• As XML

How a ShakeCast server extracts data from each of these mechanisms is described below.

8.4.1 Data Exchanged as Request Parameters
A ShakeCast Request can include parameters that refer to data found in the ShakeCast Data-
base. For example, the get_product request can refer to an Event ID to ask for products asso-
ciated with a single Event. In these cases, the data is used as a query predicate on the upstream
server.

A ShakeCast Request can also include parameters that are not used as query predicates, but in-
stead are used to set or define values for a ShakeCast database object, such as an Event or Prod-
uct. For example, the ShakeCast new_event request always includes the event_id parameter,
because it is creating a new event. The request can also include the event_location parame-

ShakeCast System Specification

8-4 Gatekeeper Systems July 2004

ter to pass a ShakeCast server the location of the earthquake. Requests sometimes include ad-
ditional parameters (such as the event_location parameter in the above example) so that
downstream servers do not have to ask for data that they may not want.

Data in requests is always text, but the values stored in the ShakeCast database may be text or
binary (integer, float, or date-time). A server that is storing data in the database attempts to cast
the parameters from text into the datatype defined for the column in the database. If the data
does not successfully convert into that format, then the script returns an error, which is written
to the ShakeCast Status XML and returned to the requesting server.

8.4.2 Data Exchanged as XML
A ShakeCast Request can include data that is stored in an XML message. For example, if a
downstream server issues a get_event_list request, the upstream server can store all of the
event data in an Event XML message and return all of the data in the payload of the request re-
sponse.

When data is provided in an XML message, the ShakeCast server parses the XML using [tbs –
how to handle DTDs]. The parsed data is then stored. Data in XML is always text, but the val-
ues stored in the ShakeCast database may be text or binary (integer, float, or date-time). A
server that is storing data in the database attempts to cast the parameters from text into the
datatype defined for the column in the database. If the data does not successfully convert into
that format, then the script returns an error, which is written to the ShakeCast Status XML and
returned to the requesting server.

8.5 Product File Exchanges
Some ShakeCast products consist of a single file; for example, an image of the Peak Ground
Acceleration for an Event might be contained in a single .PNG file. Others consist of multiple
files, such as a ShapeFiles set (a file set that contains GIS data), or a georeferenced TIFF file
(which consists of a .TIF file and a .TFW file that contains geo-referencing information). Some
ShakeMap products may also have an accompanying “manifest” or information file that pro-
vides further supporting information, in either a machine-readable or human-readable form.

Because many ShakeCast products consist of multiple parts, all products are always contained
in a ZIP archive. The ZIP file preserves the file metadata (creation timestamp, for instance) and
also serves to compress the file contents to improve file transfer times. Therefore, when a
ShakeCast Server retrieves a ShakeCast Product File, it always expects a .ZIP file, and it always
unzips its contents before storing it and handing it off to other processors.

All ShakeCast products are stored in a directory hierarchy, the root of which is specified as a
configuration parameter when the ShakeCast system is initially installed.

[details tbs on how products are organized in the directories. By product? By shakemap?]

8.6 Grid File Exchanges
Grid Files are a special case of Product File Exchanges. The processing described in the previ-
ous section is applied to Grid Files, but then the data is extracted from the Grid File into the
ShakeCast Database.

ShakeCast System Specification

July 2004 Gatekeeper Systems 8-5

This processing is accomplished by the script store_grid_records. This script does the fol-
lowing operations:

• A Grid File may be based on an existing grid, or it may define a new grid. The script de-
termines if this is a new grid or an existing grid by examining the grid geometry. The grid
geometry is defined by parameters in the first record of a grid file. If the geometry matches
that of an existing grid in the GRID table, then the grid number of the existing grid is used
for subsequent steps. If the geometry does not match any existing grid, then a new grid is
created.

• The values in a Grid File are stored in second normal form (a list of values for separate met-
rics at each grid cell). The values in the ShakeCast Database are stored in third normal form
(each grid value for each metric is in a separate row). When a grid file is processed, the
processor breaks the file into separate third normal form records and stores those records.

• If an error occurs on storing any one of the records, then the entire grid file is rejected (and
not stored) for that one metric, but other metrics are stored.

ShakeCast System Specification

July 2004 Gatekeeper Systems 9-1

Chapter 9 Invoking External Procedures from ShakeCast

[tbs]

9.1 Overview
[tbs]

9.2 External Script Environment
[tbs]

9.3 Environment Variables and Parameters
[tbs]

9.4 Returning Status Values
[tbs]

ShakeCast System Specification

July 2004 Gatekeeper Systems 10-1

Chapter 10 Testing ShakeCast

[tbs]

10.1 Overview
[tbs]

10.2 Server Self-Test Functions
[tbs]

10.3 Communication Tests
[tbs]

10.4 Processing Standard Test Messages
[tbs]

10.5 Test Logs and Test Error Reporting
[tbs]

ShakeCast System Specification

July 2004 Gatekeeper Systems 11-1

Chapter 11 ShakeCast Administration User Interface

[tbs]

11.1 Overview
[tbs]

11.2 Notification Requests and Notification Pages
[tbs]

11.3 User Administration Pages
[tbs]

11.4 System Configuration Pages
[tbs]

ShakeCast System Specification

July 2004 Gatekeeper Systems I

INDEX

administrator .. 2
ShakeCast Server ...6-5

authentication..2-5
damage level6-19. See fragility
Damage Level ...1-8
data exchange..8-3
date format ..2-3
DNS... See IP addresses
Downstream ..1-7
event

notification..7-8
status ...6-8
table...6-7
XML ...5-1

Event..1-7
exchange

exchange log...6-14
Exchange ...1-8
exchange log ...8-2

table...6-14
external procedures...9-1
facility..6-16
Facility...1-8
Fragility ...1-8
get_event_list ..3-2
get_metadata_list ..3-4
get_product_list...3-5
get_server_list ...3-7
grid

notification..7-10
table...6-12

heartbeat ..3-9
IP addresses...2-6
latitude and longitude ... 2-4, 3-2
location.. See Facility
metadata exchanges ..8-2
metric

table...6-11
network

ShakeCast ...1-9

new_event ... 3-10
new_metadata ... 3-11
new_product ... 3-12
new_server.. 3-13
notification.. 7-1

request See notification request
Notification ... 1-9
notification request

table .. 6-17
parameter .. 2-3
polling ... 4-1
procedures

externalSee external procedures
product

notification ... 7-9
table .. 6-10
XML ... 5-2

Product .. 1-8
product file exchange ... 8-4
Product Metric ..See Metric
push ... 4-3
register... 3-14
registration .. 4-6
Requests .. 2-1
server

database tables ... 6-2
status... 5-3

Server
ShakeCast... 1-7

server registration See registration
ShakeMap ... 1-7

table .. 6-9
XML ... 5-2

status...5-3, 9-1
system

registration ..7-13, 7-14
time format.. 2-3
Upstream... 1-7
XML.. 5-1

Database Description
for

ShakeCast

“ShakeCast: Delivering Earthquake Shaking
Data to the People Who Need It”

Software Version 1.0
Documentation Version 1.0

July 2004

ii Gatekeeper Systems July 2004

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure of this document or of the software described herein is governed by the terms
of a License Agreement or, in the absence of an agreement, is subject to the restrictions stated in subpara-
graph (c) (1) of the Commercial Computer Software –Restricted Rights clause at FAR 52.227-19 or sub-
paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013, as applicable. Contractor/Manufacturer is Gatekeeper Systems, 1010 E. Union St, Pasadena CA
91106, 626 449 8135, 800 424 3070, Info@Gatekeeper.com, http://www.gatekeeper.com/.

Form Number: GKS 2004-9

Unpublished work – protected under the copyright laws of the United States.

Copyright © 2003 by Gatekeeper Systems. All rights reserved.

ShakeCast Database Specification

July 2004 Gatekeeper Systems iii

Table of Contents

Chapter 1 Introduction ...1-1

Chapter 2 Database Tables for Servers and System Administrators2-3

2.1 SERVER ...2-4

2.2 SERVER_STATUS..2-5

2.3 SERVER_PERMISSION..2-6

2.4 PERMISSION ..2-6

2.5 SERVER_ADMINISTRATOR..2-6

2.6 ADMINISTRATOR_ROLE...2-7

2.7 EXCHANGE_LOG ...2-7

2.8 EXCHANGE_TYPE ...2-7

2.9 EXCHANGE_ACTION..2-8

2.10 LOG_MESSAGE_TYPE..2-8

Chapter 3 Database Tables for Events, ShakeMaps, and Products3-9

3.1 EVENT..3-9

3.2 EVENT_STATUS..3-10

3.3 EVENT_TYPE...3-10

3.4 SHAKEMAP ..3-11

3.5 SHAKEMAP_STATUS ..3-12

3.6 SHAKEMAP_REGION..3-12

3.7 PRODUCT..3-13

3.8 PRODUCT_STATUS..3-14

3.9 METRIC ...3-14

3.10 PRODUCT_TYPE...3-15

3.11 GRID ...3-15

3.12 FACILITY_SHAKING...3-16

3.13 SHAKEMAP_METRIC..3-16

Chapter 4 Database Tables for Facilities..4-18

4.1 FACILITY ..4-19

4.2 FACILITY_TYPE ...4-20

4.3 FACILITY_ATTRIBUTE..4-21

ShakeCast Database Specification

iv Gatekeeper Systems July 2004

4.4 FACILITY_FRAGILITY...4-21

4.5 FACILITY_SHAKING...4-21

Chapter 5 Database Tables for Notification..5-23

5.1 NOTIFICATION_REQUEST..5-24

5.2 FACILITY_NOTIFICATION_REQUEST..5-26

5.3 NOTIFICATION ...5-26

5.4 DELIVERY_STATUS...5-27

5.5 DAMAGE_LEVEL..5-27

5.6 MESSAGE_FORMAT..5-28

5.7 NOTIFICATION_TYPE ..5-28

5.8 NOTIFICATION_CLASS..5-29

5.9 SHAKECAST_USER..5-29

5.10 USER_TYPE ..5-30

5.11 USER_DELIVERY_METHOD...5-30

Chapter 6 ShakeCast Internal Operational Tables ...6-31

6.1 Processor Parameter ...6-31

6.2 Dispatch Task...6-31

ShakeCast Database Specification

July 2004 Gatekeeper Systems 1-1

ShakeCast Database Specification

July 2004 Gatekeeper Systems 1-1

Chapter 1 Introduction

ShakeCast servers store much of the data used by the server in a relational database. The
ShakeCast database contains information needed to interact with other ShakeCast Servers, data
that will be presented to users, configuration information needed to perform notifications, and
various other kinds of data.

The following paragraphs document the structure of the ShakeCast database using a standard
entity-relationship modeling syntax.

The ShakeCast database is used in all elements of the ShakeCast system. Although some tables
are used in many different stages of ShakeCast operation, the tables may be conveniently
grouped as follows:

• Tables that define the ShakeCast system, the network of ShakeCast servers, exchanges
between those servers, and the administrators who maintain that network

• Tables that define ShakeCast events (earthquakes), products, and related data

• Tables that are used to notify end users of earthquakes, shaking levels at particular fa-
cilities, and other ShakeCast events

• Miscellaneous operational tables

Each of these groups of tables is documented in the sections below.

ShakeCast Database Specification

1-2 Gatekeeper Systems July 2004

damage_level
DAMAGE_LEVEL

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

delivery_method
DELIVERY_METHOD

NAME
DESCRIPTION
SCRIPT_NAME
UPDATE_USERNAME
UPDATE_TIMESTAMP

delivery_status
DELIVERY_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

event
EVENT_ID
EVENT_VERSION

EVENT_STATUS (FK)
EVENT_TYPE (FK)
EVENT_NAME
EVENT_LOCATION_DESCRIPTION
EVENT_TIMESTAMP
EXTERNAL_EVENT_ID

RECEIVE_TIMESTAMP
MAGNITUDE
LAT
LON
SEQ
INITIAL_VERSION
SUPERCEDED_TIMESTAMP

event_status
EVENT_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

event_type
EVENT_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

exchange_action
EXCHANGE_ACTION

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

exchange_log

EXCHANGE_LOG_ID

SERVER_ID (FK)
LOG_MESSAGE_TYPE (FK)
EXCHANGE_TYPE (FK)
EXCHANGE_ACTION (FK)
EXCHANGE_TIMESTAMP
EXCHANGE_ITEM_PK
EXCHANGE_PARAMETER

exchange_type
EXCHANGE_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

facility
FACILITY_ID

FACILITY_TYPE (FK)
EXTERNAL_FACILITY_ID

FACILITY_NAME
SHORT_NAME
DESCRIPTION
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
UPDATE_USERNAME
UPDATE_TIMESTAMP

facility_attribute
FACILITY_ID (FK)

ATTRIBUTE_NAME
ATTRIBUTE_VALUE

facility_fragility
FACILITY_FRAGILITY_ID

FACILITY_ID (FK)
DAMAGE_LEVEL (FK)
LOW_LIMIT
HIGH_LIMIT
METRIC
UPDATE_USERNAME
UPDATE_TIMESTAMP

facility_notification_request
FACILITY_ID (FK)
NOTIFICATION_REQUEST_ID (FK)

facility_shaking
FACILITY_ID (FK)
GRID_ID (FK)

VALUE_1
VALUE_2
VALUE_3
VALUE_4
VALUE_5
VALUE_6

facility_type
FACILITY_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

grid
GRID_ID

SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
ORIGIN_LAT
ORIGIN_LON
LATITUDE_CELL_COUNT
LONGITUDE_CELL_COUNT

log_message_type
LOG_MESSAGE_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

message_format
MESSAGE_FORMAT

NAME
DESCRIPTION
FORMAT_STRING
UPDATE_USERNAME
UPDATE_TIMESTAMP

metric
METRIC

SHORT_NAME
NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

notification
NOTIFICATION_ID

NOTIFICATION_REQUEST_ID (FK)
SHAKECAST_USER (FK)

DELIVERY_STATUS (FK)
GRID_ID (FK)
EVENT_ID (FK)
EVENT_VERSION (FK)
PRODUCT_ID (FK)

METRIC (FK)

DELIVERY_METHOD (FK)
FACILITY_ID (FK)

QUEUE_TIMESTAMP
DELIVERY_TIMESTAMP
NEXT_DELIVERY_TIMESTAMP
TRIES
DELIVERY_ATTEMPT_TIMESTAMP

DELIVERY_ADDRESS

GRID_VALUE
DELIVERY_COMMENT

notification_class
NOTIFICATION_CLASS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

notification_request
NOTIFICATION_REQUEST_ID

DAMAGE_LEVEL (FK)
SHAKECAST_USER (FK)
NOTIFICATION_TYPE (FK)
EVENT_TYPE (FK)
DELIVERY_METHOD (FK)
MESSAGE_FORMAT (FK)

PRODUCT_TYPE (FK)
METRIC (FK)

LIMIT_VALUE
USER_MESSAGE
NOTIFICATION_PRIORITY
AUXILIARY_SCRIPT
DISABLED

AGGREGATE_FLAG
AGGREGATION_GROUP
UPDATE_USERNAME
UPDATE_TIMESTAMP

notification_type
NOTIFICATION_TYPE

NOTIFICATION_CLASS (FK)
NAME
DESCRIPTION
NOTIFICATION_ATTEMPTS
UPDATE_USERNAME
UPDATE_TIMESTAMP

permission
PERMISSION

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

product
PRODUCT_ID

SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)
PRODUCT_TYPE (FK)
PRODUCT_STATUS (FK)

GRID_ID (FK)

GENERATING_SERVER
MAX_VALUE
MIN_VALUE
GENERATION_TIMESTAMP
RECEIVE_TIMESTAMP
UPDATE_TIMESTAMP
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
PRODUCT_FILE_EXISTS
SUPERCEDED_TIMESTAMP

product_status
PRODUCT_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

product_type
PRODUCT_TYPE

METRIC (FK)

NAME
DESCRIPTION

FILENAME
UPDATE_USERNAME

UPDATE_TIMESTAMP

server
SERVER_ID

SERVER_STATUS (FK)

DNS_ADDRESS
OWNER_ORGANIZATION
LAST_HEARD_FROM
ERROR_COUNT
SYSTEM_GENERATION

SOFTWARE_VERSION
BIRTH_TIMESTAMP
DEATH_TIMESTAMP
PKI_KEY

LAT
LON
LAST_EVENT_TIMESTAMP
NUMBER_OF_USERS
ACCESS_COUNT
EVENT_COUNT
PRODUCT_COUNT
PASSWORD
UPSTREAM_FLAG
DOWNSTREAM_FLAG
POLL_FLAG
QUERY_FLAG
SELF_FLAG
EVENT_HWM
SHAKEMAP_HWM
PRODUCT_HWM
UPDATE_USERNAME
UPDATE_TIMESTAMP

server_administrator
SHAKECAST_USER (FK)
SERVER_ID (FK)

ADMINISTRATOR_ROLE (FK)
UPDATE_USERNAME
UPDATE_TIMESTAMP

server_permission
SERVER_ID (FK)
PERMISSION (FK)

UPDATE_USERNAME
UPDATE_TIMESTAMP

server_status
SERVER_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME

UPDATE_TIMESTAMP

shakecast_user
SHAKECAST_USER

USER_TYPE (FK)

EMAIL_ADDRESS
PHONE_NUMBER
FULL_NAME
PASSWORD
USERNAME

UPDATE_USERNAME
UPDATE_TIMESTAMP

shakemap

SHAKEMAP_ID
SHAKEMAP_VERSION

SHAKEMAP_STATUS (FK)
EVENT_ID (FK)
EVENT_VERSION (FK)

EVENT_TYPE (FK)

GENERATING_SERVER
SHAKEMAP_REGION
GENERATION_TIMESTAMP
RECEIVE_TIMESTAMP
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
BEGIN_TIMESTAMP
END_TIMESTAMP
SEQ
SUPERCEDED_TIMESTAMP

shakemap_metric
GRID_ID (FK)

SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)
METRIC (FK)
VALUE_COLUMN_NUMBER
MAX_VALUE

MIN_VALUE

shakemap_status
SHAKEMAP_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

user_delivery_method
USER_DELIVERY_METHOD_ID

SHAKECAST_USER (FK)
DELIVERY_METHOD (FK)
DELIVERY_ADDRESS
PRIORITY
AUXILIARY_DATA
UPDATE_USERNAME
UPDATE_TIMESTAMP

user_type
USER_TYPE

NAME
DESCRIPTION

UPDATE_USERNAME
UPDATE_TIMESTAMP

administrator_role
ADMINISTRATOR_ROLE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

Project : sc_v2.DM1

Author :

Company :

Version : 1.0 Modified: 8/13/2004
Copyright (c) 2004

ShakeCast Database Specification

July 2004 Gatekeeper Systems 2-3

Chapter 2 Database Tables for Servers and System Administrators

The first group of tables defines ShakeCast servers and the organizations and users responsible
for those servers. These tables also define the rights that each server has to communicate with
the current server.

Server Tables

server_permission
SERVER_ID (FK)
PERMISSION (FK)

UPDATE_USERNAME
UPDATE_TIMESTAMP

permission
PERMISSION

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

administrator_role
ADMINISTRATOR_ROLE

NAME
DESCRIPTION
UPDATE_USERNAME

UPDATE_TIMESTAMP

user_type
USER_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

exchange_log
EXCHANGE_LOG_ID

SERVER_ID (FK)
LOG_MESSAGE_TYPE (FK)
EXCHANGE_TYPE (FK)

EXCHANGE_ACTION (FK)
EXCHANGE_TIMESTAMP
EXCHANGE_ITEM_PK
EXCHANGE_PARAMETER

exchange_action
EXCHANGE_ACTION

NAME
DESCRIPTION

UPDATE_USERNAME
UPDATE_TIMESTAMP

exchange_type
EXCHANGE_TYPE

NAME
DESCRIPTION

UPDATE_USERNAME
UPDATE_TIMESTAMP

server_status
SERVER_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

server
SERVER_ID

SERVER_STATUS (FK)

DNS_ADDRESS
OWNER_ORGANIZATION
LAST_HEARD_FROM
ERROR_COUNT
SYSTEM_GENERATION
SOFTWARE_VERSION
BIRTH_TIMESTAMP
DEATH_TIMESTAMP
PKI_KEY

LAT
LON
LAST_EVENT_TIMESTAMP
NUMBER_OF_USERS
ACCESS_COUNT
EVENT_COUNT
PRODUCT_COUNT
PASSWORD

UPSTREAM_FLAG
DOWNSTREAM_FLAG
POLL_FLAG
QUERY_FLAG
SELF_FLAG
EVENT_HWM
SHAKEMAP_HWM
PRODUCT_HWM

UPDATE_USERNAME
UPDATE_TIMESTAMP

server_administrator
SHAKECAST_USER (FK)
SERVER_ID (FK)

ADMINISTRATOR_ROLE (FK)
UPDATE_USERNAME
UPDATE_TIMESTAMP

shakecast_user
SHAKECAST_USER

USER_TYPE (FK)

EMAIL_ADDRESS
PHONE_NUMBER
FULL_NAME
PASSWORD
USERNAME

UPDATE_USERNAME
UPDATE_TIMESTAMP

Server Tables

ShakeCast Database Specification

2-4 Gatekeeper Systems July 2004

2.1 SERVER
The SERVER table contains information about every ShakeCast server that this server commu-
nicates with and every server that creates data used by this server.

Column Datatype Description

SERVER_ID Integer A globally unique identifier for the server. Server
IDs are currently assigned by contacting the
ShakeCast Registrar, at register@shakecast.org .

ACCESS_COUNT Integer The number of user accesses to ShakeCast data
and reports. (Not currently used.)

BIRTH_TIMESTAMP Datetime The earliest known date of operation of the server.
(Not currently used.)

DEATH_TIMESTAMP Datetime The last known date of operation of the server.
(Not currently used.)

DNS_ADDRESS String DNS address (name) of the server. This may also
be the IP address, if necessary.

DOWNSTREAM_FLAG Integer This value is non-null if the server is downstream of
this server; that is, if the local server feeds data to
the server defined in this record of the SERVERS
table.

ERROR_COUNT Integer The number of errors recorded since the last time a
successful exchange took place with this server.
(Not currently used.)

EVENT_COUNT Integer The number of ShakeCast events stored in the
ShakeCast server.

EVENT_HWM Integer The latest (greatest) EVENT.SEQ sent to the
server listed in this record.

LAST_EVENT_TS Datetime The date and time of the last update to the event
table on this server.

LAST_HEARD_FROM Datetime The date and time (GMT) that the server was last
heard from by this server

LAT Float Latitude of this server

LON Float Longitude of this server

NUMBER_OF_USERS Integer The number of unique user IDs that have access to
ShakeCast data. (Not currently used.)

OWNER_ORGANIZATION String The name of the organization that operates this
server

PASSWORD String The password used by the local server to log into
this remote server.

PKI _KEY String The public key associated with this server. (Not
currently used.)

POLL_FLAG Integer This value is non-null if the given server should be
polled by the local server. (See also
QUERY_FLAG.)

ShakeCast Database Specification

July 2004 Gatekeeper Systems 2-5

QUERY_FLAG.)

PRODUCT_COUNT Integer The number of ShakeCast products stored in the
ShakeCast server. (Not currently used.)

PRODUCT_HWM Integer The latest (greatest) PROCUCT.PRODUCT_ID
sent to the server listed in this record.

QUERY_FLAG Integer This value is non-null if the given server should be
allowed to poll the local server. (See also
POLL_FLAG.)

SELF_FLAG Integer This value is non-null if the record refers to the lo-
cal server. This is how the local server stores and
locates its server characteristics. Only one record
may have the SELF_FLAG set.

SHAKEMAP_HWM Integer The latest (greatest) SHAKEMAP.SEQ sent to the
server listed in this record.

SOFTWARE_VERSION String The version string for the ShakeCast software this
server is currently running.

STATUS Integer The current operational status of the server

SYSTEM_GENERATION Integer The number of times that this server has restarted
the ShakeCast software. This value is incre-
mented each time a server is restarted.

UPDATE_TIMESTAMP Date Last time this record was changed.

UPDATE_USERNAME String Local database user who performed the last up-
date.

UPSTREAM_FLAG Integer This value is non-null if the server is upstream of
this server; that is, if the local server feeds data to
the server defined in this record of the SERVERS
table.

2.2 SERVER_STATUS
The SERVER_STATUS table defines the valid codes for the STATUS column of the SERVER
table. Typical values for the SERVER_STATUS column include “ALIVE”, “UNKNOWN”,
and “REMOVED”.

Column Datatype Description

SERVER_STATUS String Type code for server status

NAME String Status name

DESCRIPTION String Human readable meaning for this value

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

ShakeCast Database Specification

2-6 Gatekeeper Systems July 2004

2.3 SERVER_PERMISSION
The SERVER_PERMISSION table defines the valid codes for the PERMISSION column of the
SERVER table. (This table is not currently used.)

Column Datatype Description

SERVER_ID Integer ID of the server for which permission is to be established.

PERMISSION Integer Code for the permission granted to this server.

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

2.4 PERMISSION
The PERMISSION table defines which activities are valid when communicating with the each
server in the ShakeCast network. (This table is not currently used.)

Column Datatype Description

PERMISSION Integer Type code for operations permitted in interactions between the
local server and the server indicated.

NAME String Status name

DESCRIPTION String Human readable meaning for this value

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated this
record

2.5 SERVER_ADMINISTRATOR
The SERVER_ADMINISTRATOR table contains links to the ShakeCast users who administer
ShakeCast servers. In most cases, a particular individual will be associated with only a single
ShakeCast server. (This table is not currently used.)

Column Datatype Description

SERVER_ID Integer The globally unique ID for the server with which this adminis-
trator is associated.

SHAKECAST_USER String The user ID of the ShakeCast user who is an administrator for
this server.

ADMINISTRATOR_ROLE Integer The role that this person serves in the administration of this
server.

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

ShakeCast Database Specification

July 2004 Gatekeeper Systems 2-7

2.6 ADMINISTRATOR_ROLE
The ADMINISTRATOR_ROLE table defines the valid roles for administrators. (This table is
not currently used.)

Column Datatype Description

ADMNISTRATOR_ROLE Integer Type code for the administrator role

NAME String Name of role

DESCRIPTION String Human readable meaning for this value

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

2.7 EXCHANGE_LOG
A product is moved between ShakeCast servers via an exchange. The EXCHANGE_LOG table
records salient information about this activity. (This table is not currently used.)

Column Datatype Description

EXCHANGE_LOG_ID Integer Locally unique identifier for each exchange operation

SERVER_ID Integer Globally unique ID of the server on the other end of the
exchange. Foreign key to the SERVER table.

EXCHANGE_TYPE String Type of exchange activity. Foreign key to the
EXCHANGE_TYPE table

EXCHANGE_ACTION String The action taken during this exchange. Foreign key to the
EXCHANGE_ACTION table.

EXCHANGE_TIMESTAMP Datetime The date and time the exchange was initiated

EXCHANGE_ITEM_PK Integer A general parameter to hold the primary key value of the
item exchanged. The interpretation of this value depends
on the EXCHANGE_TYPE.

EXCHANGE_PARAMETER String A general parameter to contain additional data about the
exchange. The interpretation of this column depends on
the value of EXCHANGE_TYPE.

2.8 EXCHANGE_TYPE
The EXCHANGE_TYPE table defines the valid codes for the EXCHANGE_TYPE column of
the EXCHANGE table. Valid exchange types include “Get”, “Put”, and “Heartbeat”.

ShakeCast Database Specification

2-8 Gatekeeper Systems July 2004

Column Datatype Description

EXCHANGE_TYPE String Type code for exchanges

NAME String Exchange type name

DESCRIPTION String Human readable meaning for this value

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated this
record

2.9 EXCHANGE_ACTION
The EXCHANGE_ACTION table defines the disposition of the exchange. (This table is not
currently used.)

Column Datatype Description

EXCHANGE_TYPE Integer Type code for exchanges

NAME String Exchange type name

DESCRIPTION String Human readable meaning for this value

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated this
record

2.10 LOG_MESSAGE_TYPE
The LOG_MESSAGE_TYPE table defines the type of record stored in the ECHANGE_LOG
table. (This table is not currently used.)

Column Datatype Description

LOG_MESSAGE_TYPE Integer Type code for log records.

NAME String Exchange type name

DESCRIPTION String Human readable meaning for this value

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated this
record

ShakeCast Database Specification

July 2004 Gatekeeper Systems 3-9

Chapter 3 Database Tables for Events, ShakeMaps, and Products

The following tables contain the data needed to represent Events, ShakeMaps, and ShakeMap
Products.

3.1 EVENT
The EVENT table contains information about seismic events. The EVENT_ID is a globally
unique, permanently assigned identifier associated with a single seismic event.

Column Datatype Description

EVENT_ID Integer A globally unique identifier for the event

EVENT_LOCATION_DESCRIPTION String Human-readable location description (i.e., “8.1mi of
Pasadena, CA”)

Events, ShakeMaps and Products

shakemap
SHAKEMAP_ID
SHAKEMAP_VERSION

SHAKEMAP_STATUS (FK)
EVENT_ID (FK)
EVENT_VERSION (FK)

EVENT_TYPE (FK)

GENERATING_SERVER
SHAKEMAP_REGION

GENERATION_TIMESTAMP
RECEIVE_TIMESTAMP
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
BEGIN_TIMESTAMP
END_TIMESTAMP
SEQ

SUPERCEDED_TIMESTAMP

event_type
EVENT_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

Events, ShakeMaps and Products

shakemap_metric
GRID_ID (FK)

SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)
METRIC (FK)
VALUE_COLUMN_NUMBER
MAX_VALUE
MIN_VALUE

event
EVENT_ID
EVENT_VERSION

EVENT_STATUS (FK)
EVENT_TYPE (FK)
EVENT_NAME
EVENT_LOCATION_DESCRIPTION
EVENT_TIMESTAMP
EXTERNAL_EVENT_ID
RECEIVE_TIMESTAMP
MAGNITUDE

LAT
LON
SEQ
INITIAL_VERSION
SUPERCEDED_TIMESTAMP

grid
GRID_ID

SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
ORIGIN_LAT
ORIGIN_LON
LATITUDE_CELL_COUNT

LONGITUDE_CELL_COUNT

product_status
PRODUCT_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

event_status
EVENT_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

shakemap_status
SHAKEMAP_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

product
PRODUCT_ID

SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)
PRODUCT_TYPE (FK)
PRODUCT_STATUS (FK)

GRID_ID (FK)

GENERATING_SERVER
MAX_VALUE
MIN_VALUE
GENERATION_TIMESTAMP
RECEIVE_TIMESTAMP

UPDATE_TIMESTAMP
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
PRODUCT_FILE_EXISTS
SUPERCEDED_TIMESTAMP

product_type
PRODUCT_TYPE

METRIC (FK)

NAME
DESCRIPTION

FILENAME
UPDATE_USERNAME
UPDATE_TIMESTAMP

metric
METRIC

SHORT_NAME
NAME

DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

ShakeCast Database Specification

3-10 Gatekeeper Systems July 2004

Pasadena, CA”)

EVENT_NAME String Name of event (i.e., “Northridge”)

EVENT_STATUS Integer The status of this event (active, cancelled, test, ar-
chive, etc.)

EVENT_TIMESTAMP Datetime The date and time (GMT) that the event occurred

EVENT_TYPE Integer Foreign key to the EVENT_TYPE table

EVENT_VERSION Integer A sequential version number. The latest version is
the most current representation of the data about
this event.

EXTERNAL_EVENT_ID String Event ID in a locally-defined external server

LAT Float The latitude of the point representation of the event

LON Float The longitude of the point representation of the
event

RECEIVE_TIMESTAMP Datetime The time this event information was first received
on this server

SUPERCEDED_TIMESTAMP Datetime The time this event was superceded by a newer
version or by a different event.

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last
updated this record

3.2 EVENT_STATUS
The EVENT_STATUS table defines the valid codes for the STATUS column of the EVENT
table. The event status is typically one of the following: “normal”, “cancelled”, “incomplete”,
or “released”.

Column Datatype Description

EVENT_STATUS String Type code for event status

NAME String Status name

DESCRIPTION String Human readable meaning for this value

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

3.3 EVENT_TYPE
The EVENT_TYPE table defines the valid codes for the EVENT_TYPE column of the EVENT
table. The event type is typically one of the following: “actual”, “test”, or “scenario”.

ShakeCast Database Specification

July 2004 Gatekeeper Systems 3-11

Column Datatype Description

EVENT_TYPE Integer Code for the event type

NAME String Event type name

DESCRIPTION String Human readable meaning for this value

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

3.4 SHAKEMAP
The SHAKEMAP table describes a single ShakeMap. A ShakeMap is produced outside of the
ShakeCast system, by a ShakeMap Server. ShakeMaps are associated with zero or more events
and with zero or more Products.

Column Datatype Description

SHAKEMAP_ID Integer Uniquely defines a ShakeMap.

SHAKEMAP_VERSION Integer ShakeMap versions start with one and are increased each
time the ShakeMap is updated. Only the latest version of
a ShakeMap is correct. The primary key of this table is
the SHAKEMAP_ID plus VERSION.

EVENT_ID Integer

EVENT_VERSION Integer

The EVENT_ID and EVENT_VERSION of the event for
which this ShakeMap was created.

GENERATION_TIMESTAMP Datetime The time this ShakeMap was first created

GENERATING_SERVER Integer The unique ID of a ShakeCast server

GRID_ID Integer Foreign key to the Grid Table, which defines the bounding
box and cell size of the grid that applies to this ShakeMap

BEGIN_TIMESTAMP Datetime The beginning date and time of the period covered by this
ShakeMap. (Not currently used.)

END_TIMESTAMP Datetime The ending date and time of the period covered by this
ShakeMap. (Not currently used.)

LAT_MIN Float

LAT_MAX Float

LON_MIN Float

LON_MAX Float

Bounding box of the area covered by this ShakeMap

RECEIVE_TIMESTAMP Datetime The timestamp of the last time this ShakeMap was re-
ceived from an upstream server

ShakeCast Database Specification

3-12 Gatekeeper Systems July 2004

SEQ Integer The unique local sequence number of this event on this
server. This sequence number is used to keep track of
the high water mark for event records.

SHAKEMAP_REGION String The ShakeMap region that generated this ShakeMap.
(Not currently used.)

SHAKEMAP_STATUS Integer The status of this ShakeMap (active, cancelled, test, ar-
chive, etc.)

SUPERCEDED_TIMESTAMP Datetime Time this ShakeMap was superceded by a new version or
by a different ShakeMap.

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last up-
dated this record

3.5 SHAKEMAP_STATUS
The SHAKEMAP_STATUS table defines the valid codes for the STATUS column of the
SHAKEMAP table. The ShakeMap status is typically one of the following: “normal”, “can-
celled”, “incomplete”, “released”, and “reviewed”.

Column Datatype Description

SHAKEMAP_STATUS String Type code for ShakeMap status

NAME String Status name

DESCRIPTION String Human readable meaning for this value

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

3.6 SHAKEMAP_REGION
The SHAKEMAP_REGION table defines the ShakeMap Regions. Regions might include
Southern California, Northern California, and Utah. (This table is not currently used.)

Column Datatype Description

SHAKEMAP_REGION String Type code for ShakeMap Region

NAME String Region Name

DESCRIPTION String Human readable meaning for this value

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

ShakeCast Database Specification

July 2004 Gatekeeper Systems 3-13

3.7 PRODUCT
This table contains information about each ShakeMap product. A product is a single metric
(PRODUCT_METRIC column) for a single ShakeMap (SHAKEMAP_ID column) in a single
format (PRODUCT_FORMAT column).

Column Datatype Description

PRODUCT_ID Integer A globally unique identifier for this product.

GENERATING_SERVER Integer The unique ID of a ShakeCast server

GENERATION_TIMESTAMP Datetime The time this ShakeMap was first created.

GRID_ID Integer A foreign key to the grid layout that is used when this data
is represented relationally

LAT_MAX Float

LAT_MIN Float

LON_MAX Float

LON_MIN Float

Bounding box of the area covered by this product

MAX_VALUE Integer The maximum value for METRIC contained within this
product.

METRIC Integer The shaking metric represented in this product, such as
“acceleration”, “instrumental intensity”, etc.

MIN_VALUE Integer The minimum value for METRIC contained within this
product.

PRODUCT_FILE_EXISTS Integer A flag that indicates that the file has been successfully
transferred to this server. (The product record may exist
before the product is actually available on this server.)

PRODUCT_TYPE Integer The type of this product, e.g., “GRID”, “HAZUS”,
“CONT_PGA”, “INTEN_JPG”, etc.

PRODUCT_STATUS Integer The status of this product (active, cancelled, test, archive,
etc.)

RECEIVE_TIMESTAMP Datetime The time this product information was first received on this
server

SHAKEMAP_ID Integer

SHAKEMAP_VERSION Integer

The ID and VERSION of the ShakeMap associated with
this product.

SOURCE_FILENAME String The name of the file in the local filesystem that contains
this product. This may be a single file, a directory name,
or the name of an archive file containing multiple files
(e.g., a ZIP file)

SUPERCEDED_BY Integer The PRODUCT_ID of a product that supercedes this one.

SUPERCEDES Integer The PRODUCT_ID of a product that this product super-
cedes. If this product supercedes more than one product,
only one is listed here.

ShakeCast Database Specification

3-14 Gatekeeper Systems July 2004

only one is listed here.

UPDATE_TIMESTAMP Datetime The last time this table or the ShakeMap itself was up-
dated.

VERSION Integer Product versions start with one and are increased each
time the product is updated. Only the latest version of a
product is valid and correct. The primary key of this table
is the PRODUCT_ID plus VERSION.

3.8 PRODUCT_STATUS
The PRODUCT_STATUS table defines the valid codes for the STATUS column of the
PRODUCT table. The product status is typically one of the following: “released”, “reviewed”,
and “cancelled”.

Column Datatype Description

PRODUCT_STATUS String Type code for product status

NAME String Status name

DESCRIPTION String Human readable meaning for this value

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

3.9 METRIC
The METRIC table defines the valid codes for the METRIC column of the PRODUCT table.
Shaking metrics include “peak spectral acceleration”, “maximum velocity”, “instrumental inten-
sity”, and so on.

Column Datatype Description

METRIC_ID Integer Unique identifier for this metric.

NAME String Product type name

SHORT_NAME String Abbreviation for metric name

DESCRIPTION String Human readable meaning of this metric

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

ShakeCast Database Specification

July 2004 Gatekeeper Systems 3-15

3.10 PRODUCT_TYPE
The PRODUCT_TYPE table defines the valid codes for the PRODUCT_FORMAT column of
the PRODUCT table. Product Types describe both the data in a product (e.g., “TV Map”) and
the file format (e.g., “.zip” or “.jpg”). For example, the PRODUCT_TYPE might include
“CONT_PGA” for shapefile contours of PGA, “CONT_PGV” for shapefile contours of PGV,
GRID for a ShakeMap grid file, HAZUS for a HAZUS-format file, “INTEN_JPG” for a Shak-
ing Intensity JPG image and “INTEN_PS” for a ShakeMap Intensity PostScript image file.

Column Datatype Description

PRODUCT_TYPE Integer Format code for products

NAME String Product format name

DESCRIPTION String Human readable meaning for this value

FILENAME String The string used to construct the filename for this product
type. This information is concatenated with the short name
of the metric to construct a full filename to store the product.

METRIC_ID Integer Foreign key to the Metric table. Defines the metric con-
tained in this Product Type. Not all Product Types have a
metric (e.g., GRID_XYZ products contain a mix of products).

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

3.11 GRID
A ShakeMap Grid is a rectangular array of cells, each of fixed size (in terms of latitude and lon-
gitude). The GRID table describes this array.

Column Datatype Description

GRID_ID Integer Unique ID for this grid.

ORIGIN_LATITUDE Float Latitude of the origin of the grid

ORIGIN_LONGITUDE Float Longitude of the origin of the grid

LATITUDE_CELL_COUNT Integer Number of cells in the direction of latitude (north-
south).

LONGITUDE_CELL_COUNT Integer Number of cells in the direction of longitude (east-
west)

LAT_MIN Float

LAT_MAX Float

LON_MIN Float

LON_MAX Float

Bounding box of the area covered by this product

ShakeCast Database Specification

3-16 Gatekeeper Systems July 2004

3.12 FACILITY_SHAKING
This table contains the maximal values for each of up to six metrics associated with a particular
facility and a particular grid. That is, these are the “maximal shaking values” for this facility
associated with this grid. Since a grid is a particular representation of a ShakeMap, the
FACILITY_SHAKING table can be thought of as the shaking values at a particular facility as-
sociated with a particular ShakeMap.

Column Datatype Description

FACILITY_ID Integer Foreign key to the FACILITY table. Defines the facility for
which these values apply.

GRID_ID Integer Foreign key to the Grid Table. Defines the GRID, and indi-
rectly the ShakeMap, for which these values apply.

VALUE_1 Float

VALUE_2 Float

VALUE_3 Float

VALUE_4 Float

VALUE_5 Float

VALUE_6 Float

The values for this grid cell for each metric generated by this
ShakeMap are stored in these columns. The
VALUE_COLUMN_NAME table SHAKEMAP_METRIC de-
fines which column contains a particular metric. Additional
columns may be added in the future. No assumption should
be made about the order in which metrics appear in these col-
umns.

3.13 SHAKEMAP_METRIC
This table defines the metrics that are available from a particular ShakeMap. It also defines
which column in the FACILITY_SHAKING table contains the values for a particular metric for
this ShakeMap. Software can examine the SHAKEMAP_METRIC table to find the maximal
values for any particular metric for any particular ShakeMap (and, by extension, for any par-
ticular event). Alternately, software can examine the table to find all of the maximal values for
all metrics for a particular ShakeMap, or for a particular metric.

Column Datatype Description

SHAKEMAP_ID Integer

SHAKEMAP_VERSION Integer

Foreign key to the ShakeMap Table. Defines the Shake-
Map for which this Grid Value applies.

METRIC_ID Integer Foreign key to the Metric Table

VALUE_COLUMN_NUMBER Integer The VALUE_x column number (i.e., VALUE_1, VALUE_2)
in the FACILITY_SHAKING table that contains this metric
for this ShakeMap.

MIN_VALUE Float The minimum value of this metric in this ShakeMap (not
including possible null values).

ShakeCast Database Specification

July 2004 Gatekeeper Systems 3-17

MAX_VALUE Float The maximum value of this metric in this ShakeMap (not
including possible null values).

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

ShakeCast Database Specification

4-18 Gatekeeper Systems July 2004

Chapter 4 Database Tables for Facilities

The ShakeCast System uses the following tables to define facilities and their attributes.

ShakeCast Database Specification

July 2004 Gatekeeper Systems 4-19

4.1 FACILITY
A ShakeCast Facility is a specific structure (e.g., bridge, school, pumping station, etc.) at a spe-
cific location or a region. The location may be defined by a latitude/longitude for “point” fa-
cilities, or by a bounding box for non-point facilities. Note that the FACILITY table may be
used to define a physical facility (e.g., a freeway overpass) or a region (e.g., a county). How-

Facilities

facility_fragility
FACILITY_FRAGILITY_ID

FACILITY_ID (FK)
DAMAGE_LEVEL (FK)
LOW_LIMIT
HIGH_LIMIT
METRIC
UPDATE_USERNAME
UPDATE_TIMESTAMP

facility_attribute
FACILITY_ID (FK)

ATTRIBUTE_NAME
ATTRIBUTE_VALUE

facility_type
FACILITY_TYPE

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

grid
GRID_ID

SHAKEMAP_ID (FK)

SHAKEMAP_VERSION (FK)
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
ORIGIN_LAT
ORIGIN_LON
LATITUDE_CELL_COUNT
LONGITUDE_CELL_COUNT

damage_level
DAMAGE_LEVEL

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

facility_notification_request
FACILITY_ID (FK)

NOTIFICATION_REQUEST_ID (FK)

facility
FACILITY_ID

FACILITY_TYPE (FK)
EXTERNAL_FACILITY_ID
FACILITY_NAME
SHORT_NAME
DESCRIPTION

LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
UPDATE_USERNAME
UPDATE_TIMESTAMP

facility_shaking
FACILITY_ID (FK)
GRID_ID (FK)

VALUE_1

VALUE_2
VALUE_3
VALUE_4
VALUE_5
VALUE_6

Facilities

notification_request
NOTIFICATION_REQUEST_ID

DAMAGE_LEVEL (FK)

SHAKECAST_USER (FK)
NOTIFICATION_TYPE (FK)
EVENT_TYPE (FK)
DELIVERY_METHOD (FK)
MESSAGE_FORMAT (FK)

PRODUCT_TYPE (FK)

METRIC (FK)

LIMIT_VALUE
USER_MESSAGE
NOTIFICATION_PRIORITY
AUXILIARY_SCRIPT
DISABLED

AGGREGATE_FLAG
AGGREGATION_GROUP
UPDATE_USERNAME
UPDATE_TIMESTAMP

ShakeCast Database Specification

4-20 Gatekeeper Systems July 2004

ever, when used to specify a region, the FACILITY table must express the region as a rectan-
gular bounding box.

Column Datatype Description

FACILITY_ID Integer A locally-unique primary key

NAME String Name of the facility

SHORT_NAME String Abbreviated name for facility

DESCRIPTION String A free text description or comment

EXTERNAL_FACILITY_ID String A text string that contains a facility identifier in the format that
can be used by an external system. For example, this might
contain a “Reservoir Number”, or “Pipeline Segment Number”.

FACILITY_TYPE Integer The foreign key to the FACILITY_TYPE table that defines
valid facility types for your organization.

LAT_MIN Float

LAT_MAX Float

LON_MIN Float

LON_MAX Float

Bounding box of the area covered by this facility

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

4.2 FACILITY_TYPE
The FACILITY_TYPE table defines the valid codes for the FACILITY_TYPE column of the
FACILITY table. The facility type is a business definition unique to each installation of
ShakeCast, but usually contains things such as “Bridge”, “Reservoir”, “Substation”, or “Pipe-
line”.

Column Datatype Description

FACILITY_TYPE Integer Code for the facility type

NAME String Facility type name

DESCRIPTION String Human readable meaning for this value

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

ShakeCast Database Specification

July 2004 Gatekeeper Systems 4-21

4.3 FACILITY_ATTRIBUTE
The FACILITY_ATTRIBUTE table stores arbitrary, user-defined tuples that describe a facility.
These values are used when grouping facilities for purposes of defining notification requests,
reports, or other actions on facilities.

Column Datatype Description

FACILITY_ID Integer Unique ID for the facility

ATTRIBUTE_NAME String Arbitrary attribute name string, user defined

ATTRIBUTE_VALUE String Arbitrary attribute value, user defined

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

4.4 FACILITY_FRAGILITY
The FACILITY_FRAGILITY table defines the facility thresholds for a facility for each fragility
level and each product metric.

Column Datatype Description

FACILITY_FRAGILITY_ID Integer Auto-generated unique primary key of the
FACILITY_FRAGILITY record.

FACILITY_ID Integer Foreign key to the FACILITY table. Contains the facility for
which this FACILITY_FRAGILITY applies.

DAMAGE_LEVEL Integer Foreign key to the DAMAGE_LEVEL table.

METRIC Integer Foreign key to the METRIC table. Contains the metric for
which this FACILITY_FRAGILITY applies

LOW_LIMIT Float Low limit of this fragility threshold at this facility for this metric
and damage level.

HIGH_LIMIT Float High limit of this fragility threshold at this facility for this metric
and damage level.

UPDATE_TIMESTAMP Float Last time this record was updated

UPDATE_USERNAME String Local username of the user who last updated this record

4.5 FACILITY_SHAKING
The FACILITY_SHAKING table stores the actual shaking levels associated with a specific fa-
cility and a specific ShakeMap Grid. The shaking levels are stored in the values VALUE_1
through VALUE_6, each corresponding to a different ShakeMap Metric. The column that is
used for storing each Metric are defined in the SHAKEMAP_METRIC table.

ShakeCast Database Specification

4-22 Gatekeeper Systems July 2004

Column Datatype Description

FACILITY_ID Integer Unique ID for the facility

GRID_ID Integert Unique ID for the ShakeMap Grid

VALUE_1 Float Value for a particular metric from a particular ShakeMap
Grid at the location of this Facility

VALUE_2 Float Value for a particular metric from a particular ShakeMap
Grid at the location of this Facility

VALUE_3 Float Value for a particular metric from a particular ShakeMap
Grid at the location of this Facility

VALUE_4 Float Value for a particular metric from a particular ShakeMap
Grid at the location of this Facility

VALUE_5 Float Value for a particular metric from a particular ShakeMap
Grid at the location of this Facility

VALUE_6 Float Value for a particular metric from a particular ShakeMap
Grid at the location of this Facility

ShakeCast Database Specification

July 2004 Gatekeeper Systems 5-23

Chapter 5 Database Tables for Notification

In addition to tables defined elsewhere, the ShakeCast system uses the following tables to com-
pute and execute notification operations.

ShakeCast Database Specification

5-24 Gatekeeper Systems July 2004

5.1 NOTIFICATION_REQUEST
A ShakeCast notification event is generated for each NOTIFICATION_REQUEST where the
value in a grid cell exceeds the corresponding value in the request.

Column Datatype Description

Notification

grid
GRID_ID

SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
ORIGIN_LAT

ORIGIN_LON
LATITUDE_CELL_COUNT
LONGITUDE_CELL_COUNT

message_format
MESSAGE_FORMAT

NAME
DESCRIPTION
FORMAT_STRING
UPDATE_USERNAME

UPDATE_TIMESTAMP

shakecast_user
SHAKECAST_USER

USER_TYPE (FK)

EMAIL_ADDRESS
PHONE_NUMBER
FULL_NAME

PASSWORD
USERNAME

UPDATE_USERNAME
UPDATE_TIMESTAMP

notification_type
NOTIFICATION_TYPE

NOTIFICATION_CLASS (FK)

NAME
DESCRIPTION
NOTIFICATION_ATTEMPTS
UPDATE_USERNAME
UPDATE_TIMESTAMP

delivery_method
DELIVERY_METHOD

NAME
DESCRIPTION
SCRIPT_NAME
UPDATE_USERNAME
UPDATE_TIMESTAMP

notification_request
NOTIFICATION_REQUEST_ID

DAMAGE_LEVEL (FK)
SHAKECAST_USER (FK)
NOTIFICATION_TYPE (FK)

EVENT_TYPE (FK)
DELIVERY_METHOD (FK)
MESSAGE_FORMAT (FK)

PRODUCT_TYPE (FK)
METRIC (FK)

LIMIT_VALUE
USER_MESSAGE
NOTIFICATION_PRIORITY
AUXILIARY_SCRIPT
DISABLED

AGGREGATE_FLAG
AGGREGATION_GROUP
UPDATE_USERNAME
UPDATE_TIMESTAMP

notification_class
NOTIFICATION_CLASS

NAME
DESCRIPTION

UPDATE_USERNAME
UPDATE_TIMESTAMP

user_delivery_method
USER_DELIVERY_METHOD_ID

SHAKECAST_USER (FK)
DELIVERY_METHOD (FK)
DELIVERY_ADDRESS
PRIORITY
AUXILIARY_DATA

UPDATE_USERNAME
UPDATE_TIMESTAMP

product_type
PRODUCT_TYPE

METRIC (FK)

NAME
DESCRIPTION

FILENAME
UPDATE_USERNAME
UPDATE_TIMESTAMP

metric
METRIC

SHORT_NAME
NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

product
PRODUCT_ID

SHAKEMAP_ID (FK)
SHAKEMAP_VERSION (FK)
PRODUCT_TYPE (FK)

PRODUCT_STATUS (FK)

GRID_ID (FK)

GENERATING_SERVER
MAX_VALUE
MIN_VALUE
GENERATION_TIMESTAMP
RECEIVE_TIMESTAMP
UPDATE_TIMESTAMP
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
PRODUCT_FILE_EXISTS
SUPERCEDED_TIMESTAMP

facility_notification_request
FACILITY_ID (FK)

NOTIFICATION_REQUEST_ID (FK)

facility_fragility
FACILITY_FRAGILITY_ID

FACILITY_ID (FK)
DAMAGE_LEVEL (FK)
LOW_LIMIT
HIGH_LIMIT
METRIC
UPDATE_USERNAME

UPDATE_TIMESTAMP

damage_level
DAMAGE_LEVEL

NAME
DESCRIPTION

UPDATE_USERNAME
UPDATE_TIMESTAMP

delivery_status
DELIVERY_STATUS

NAME
DESCRIPTION
UPDATE_USERNAME
UPDATE_TIMESTAMP

Notification

notification
NOTIFICATION_ID

NOTIFICATION_REQUEST_ID (FK)
SHAKECAST_USER (FK)

DELIVERY_STATUS (FK)
GRID_ID (FK)
EVENT_ID (FK)
EVENT_VERSION (FK)
PRODUCT_ID (FK)

METRIC (FK)

DELIVERY_METHOD (FK)
FACILITY_ID (FK)

QUEUE_TIMESTAMP
DELIVERY_TIMESTAMP
NEXT_DELIVERY_TIMESTAMP
TRIES
DELIVERY_ATTEMPT_TIMESTAMP

DELIVERY_ADDRESS

GRID_VALUE
DELIVERY_COMMENT

facility
FACILITY_ID

FACILITY_TYPE (FK)
EXTERNAL_FACILITY_ID
FACILITY_NAME
SHORT_NAME
DESCRIPTION
LAT_MIN
LAT_MAX
LON_MIN
LON_MAX
UPDATE_USERNAME
UPDATE_TIMESTAMP

ShakeCast Database Specification

July 2004 Gatekeeper Systems 5-25

NOTIFICATION_REQUEST_ID Integer Locally generated primary key

AGGREGATE_FLAG Integer This value is non-null if the notification is to be
aggregated.

AGGREGATION_GROUP String When a notification is to be aggregated together
with other notifications (i.e., delivered together),
this value is common to all the notifications that
are to be delivered together.

AUXILIARY_SCRIPT String Name of script to run to execute this notification
request. (See the ShakeCast Template Manual
for more information on the calling of auxiliary
scripts.)

DAMAGE_LEVEL Integer Foreign key to the DAMAGE_LEVEL table. De-
fines the damage level used in the notification
computation.

DELIVERY_METHOD Integer Foreign key to the DELIVERY_METHOD table.
Defines how the notification is to be delivered to
the user.

DISABLED Integer Non-null if this notification request is no longer to
be honored by the notification software.

EVENT_TYPE Integer Foreign key to the EVENT_TYPE table. Define
the type of events to which this notification re-
quest applies. For example, some notifications
may apply only to “live” events, or just to scenar-
ios, or just to test events.

LIMIT_VALUE Float The value of this product in this cell.

MESSAGE_FORMAT String Foreign key to the MESSAGE_FORMAT table.
The message format defines the layout of the
message, such as which data items are to be
included.

METRIC Integer Foreign key to METRIC table. Defines the metric
used in the notification computation.

NOTIFICATION_PRIORITY Integer Defines how this message is to be prioritized
relative to other messages also to be sent to this
user. (This value is not currently used.)

NOTIFICATION_TYPE Integer Foreign key to NOTIFICATION_TYPE table

SHAKECAST_USER String Foreign key to the USER table, defining which
user is to be notified

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who
last updated this record

USER_MESSAGE String Arbitrary additional message the user wants sent
when this notification request is executed. (This
value is not currently used.)

ShakeCast Database Specification

5-26 Gatekeeper Systems July 2004

5.2 FACILITY_NOTIFICATION_REQUEST
This table is used to join between the FACILITY table and the NOTIFICATION_REQUEST
table. Rows in this table indicate which facilities are to be used in which notification requests.
This allows a user to specify a single notification request that is in effect for all facilities. For
example, a user might specify that they want an Email message delivered whenever all electrical
substations are potentially damaged at the RED level. This can be accomplished by creating a
NOTIFICATION_REQUEST and joining that request to all electrical substation facilities by
placing a row in the FACILITY_NOTIFICATION_REQUEST table with that
NOTIFICATION_REQUEST_ID and the FACILITY_ID of each substation.

Column Datatype Description

FACILITY_ID Integer Foreign key to the FACILITY table.

NOTIFICATION_REQUEST_ID Integer Foreign key to NOTIFICATION_REQUEST table

5.3 NOTIFICATION
The NOTIFICATION table contains all current and historical notification requests that have
been actually triggered by the ShakeCast system. The Notification table may be thought of as
the queue of notification activity (for pending notifications) or the log of activity (for historical
notifications).

Column Datatype Description

NOTIFICATION_ID Integer Locally generated primary key

DELIVERY_ADDRESS String Actual user address (e.g., email address, pager ID,
phone number, etc.) used for the message.

DELIVERY_TIMESTAMP Datetime The last time delivery was accomplished for this
notification entry.

TRIES Integer The number of times delivery has been attempted
for this entry

DELIVERY_METHOD Integer Foreign key to DELIVERY_METHOD table. Con-
tains the method by which this notification is to be
delivered. (Note that this value has been denor-
malized for performance, and could be derived
from the NOTIFICATION_REQUEST table.)

DELIVERY_STATUS Integer Foreign key to DELIVERY_STATUS table. Con-
tains last delivery status if delivery was attempted
(may be success or errors), or completion or can-
cellation value.

DELIVERY_TIMESTAMP Datetime Time the queue entry was successfully delivered

EVENT_ID Integer

EVENT_VERSION Integer

Foreign key to the EVENT table. Contains the
event for which this notification was triggered.

ShakeCast Database Specification

July 2004 Gatekeeper Systems 5-27

GRID _ID Integer Foreign key to the GRID table. Contains the GRID
for which this notification was triggered.

GRID_VALUE Real For Grid-type notifications, contains the specific
value from the grid for this metric at the location of
the facility, to be used in the notification message
that is sent to the user.

METRIC Integer Foreign key to the METRIC table. Contains the
metric for which this notification has been created.
(Note that this value has been denormalized for
performance, and could be derived from the
NOTIFICATION_REQUEST table.)

NEXT_DELIVERY_TIMESTAMP Datetime Time the queue entry is next due to be processed

NOTIFICATION_REQUEST_ID Integer Foreign key to NOTIFICATION_REQUEST table

PRODUCT_ID Integer

PRODUCT_VERSION Integer

Foreign key to the PRODUCT table

QUEUE_TIMESTAMP Datetime Time the queue entry was created.

SHAKECAST_USER String Foreign key to the USER table, defining which user
is to be notified. (Note that this value has been
denormalized for performance, and could be de-
rived from the NOTIFICATION_REQUEST table.)

5.4 DELIVERY_STATUS
The DELIVERY_STATUS table defines the valid codes for the DELIVERY_STATUS column
of the NOTIFICATION table. Valid types are locally defined.

Column Datatype Description

DELIVERY_STATUS Integer Status code

NAME String Status code name

DESCRIPTION String Description of the meaning of this status value.

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

5.5 DAMAGE_LEVEL
The DAMAGE_LEVEL table defines the valid levels of facility damage. Valid types are typi-
cally “Green”, “Yellow”, and “Red”. Valid types are locally defined

ShakeCast Database Specification

5-28 Gatekeeper Systems July 2004

Column Datatype Description

DAMAGE_LEVEL_ID Integer Type code for damage level, locally defined

NAME String Damage level name

SHORT_NAME String Abbreviation for damage level name

DESCRIPTION String Further descriptive information about the meaning of this
damage level code

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

5.6 MESSAGE_FORMAT
The MESSGAE_FORMAT table defines the actual text and substitution directives for the mes-
sage to be delivered. Messages may have varying lengths, be in various languages, or provide
for substitution of various kinds of event and product data.

Column Datatype Description

MESSAGE_FORMAT Integer Type code for message format, locally defined

NAME String Notification type name

SHORT_NAME String Abbreviation for notification type name

DESCRIPTION String Description

FORMAT_STRING String A formatted string including substitution directives for event
and product data.

TEMPLATE_FILE String Filename of a template to be used for constructing this mes-
sage.

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

5.7 NOTIFICATION_TYPE
The NOTIFICATION_TYPE table defines the valid codes for the NOTIFICATION_TYPE col-
umn of the NOTIFICATION_REQUEST table. Valid types include “SHAKING”,
“DAMAGE”, “NEW_PROD”, “NEW_EVENT”, “UPD_EVENT and “CAN_EVENT”.

Column Datatype Description

NOTIFICATION_TYPE String Type code for notification requests

NAME String Notification type name

ShakeCast Database Specification

July 2004 Gatekeeper Systems 5-29

DESCRIPTION String Additional descriptive information about this no-
tification type

NOTIFICATION_ATTEMPTS Integer Default value for maximum number of tries for
this type of notification

NOTIFICATION_CLASS String Grouping value for notification types.

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who
last updated this record

5.8 NOTIFICATION_CLASS
The NOTIFICATION_CLASS table defines groups or classes of NOTIFICATION_TYPES.
Typical classes include “EVENT”, “SYSTEM”, “FACILITY”, and “PRODUCT”.

Column Datatype Description

NOTIFICATION_CLASS String Type code for notification class

NAME String Notification class name

DESCRIPTION String Further descriptive information about the meaning of this
notification class

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

5.9 SHAKECAST_USER
The USER table has a single record for each user who is to receive a notification.

Column Datatype Description

SHAKECAST_USER String Unique identifier for each user

FULL_NAME String Full name of the user

PASSWORD String Hashed password of this user in the ShakeCast server

USER_TYPE Integer Foreign key to the USER_TYPE table

EMAIL_ADDRESS String Primary email address for this user

PHONE_NUMBER String Primary phone number for this user

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

ShakeCast Database Specification

5-30 Gatekeeper Systems July 2004

5.10 USER_TYPE
The USER_TYPE table defines the valid codes for the USER_TYPE column of the USER ta-
ble. Valid types are locally defined.

Column Datatype Description

USER_TYPE String Type code for user types

NAME String User type name

DESCRIPTION String Further description of the user type

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

5.11 USER_DELIVERY_METHOD
This table records the delivery address and auxiliary information for the delivery methods for
each user.

Column Datatype Description

USER_DELIVERY_METHOD Integer Locally-generated primary key for this
USER_DELIVERY_METHOD.

SHAKECAST_USER Integer Foreign key to the SHAKECAST_USER table.

DELIVERY_METHOD Integer Foreign key to the DELIVERY_METHOD table.

DELIVERY_ADDRESS String The address used for this delivery method for this user.

PRIORITY Integer The Priority of this user delivery method over other re-
cords for the same user and delivery method. (This value
is not currently used.)

AUXILIARY_DATA String Auxiliary data used by some delivery methods. (This
value is not currently used.)

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last up-
dated this record

ShakeCast Database Specification

July 2004 Gatekeeper Systems 6-31

Chapter 6 ShakeCast Internal Operational Tables

A number of tables that define the operational configuration of the ShakeCast server. These
tables are documented in the following paragraphs.

6.1 Processor Parameter
The Daemon Parameter Table stores parameters that control the behavior of the ShakeCast
Processors such as the Exchange Processor, the Notification Processor, and the Message Proc-
essor.

Column Datatype Description

PROCESSOR_NAME String Name of the processor. Processors “know” their own name
because it is passed to them as a parameter when they are
invoked by the operating system.

PARAMETER_NAME String The name of the parameter for which the value is being de-
fined.

PARAMETER_VALUE String The value to which the parameter is to be set. Both numeric
and string values are stored as strings.

UPDATE_TIMESTAMP Date The date and time the record was last updated

UPDATE_USERNAME String The local database username of the user who last updated
this record

6.2 Dispatch Task
The Dispatch Task Table is a persistent record of ShakeCast Daemon dispatch activities. This
table is used to communicate task data between various processes in the ShakeCast System.
The table is used in such a way that dispatch requests will survive server crashes or failures in
the ShakeCast System software.

ShakeCast Database Specification

July 2004 Gatekeeper Systems I

INDEX

acceleration ...3-17
administrator

ShakeCast Server ...2-6
damage .. 4-22, 5-25
damage level5-28, See fragility
delivery..5-28
dispatch..6-32
energy ..3-17
event

status ...3-11
table...3-10
types..3-11

exchange..2-8
exchange log...2-7

exchange log
table...2-7

facility.. 4-20, 4-22
facility attribute...4-22
fragility ..4-22
grid

notification..5-27
product ..3-14
shaking..3-17
table...3-16

intensity ...3-15
logging...2-8
magnitude..3-17

message formats ... 5-29
metric .. 3-17

table .. 3-15
metric .. 3-15
notification...5-27, 5-29, 5-30

requestSee notification request
notification request

table .. 5-25
permission... 2-6
processing parameters .. 6-32
product

status... 3-15
table .. 3-14

region .. 3-13
server

database tables ... 2-3
permission .. 2-6
status... 2-5

ShakeMap
region.. 3-13
status... 3-13
table .. 3-12

shaking ...3-17, 4-22
shaking metrics ... 3-15
user notification .. 5-27
users ...5-25, 5-30, 5-31
velocity.. 3-15

