NCEF Resource List: School Energy Management--Renewable Energy
NCEF - National Clearinghouse for Education 

Facilities
MY PAGE   |  
Contents
Filter Results
Show from to present
Show from to present
Show all citations
Show Abstracts
Hide Abstracts
SCHOOL ENERGY MANAGEMENT--RENEWABLE ENERGY

Information on using solar, wind, and geothermal to power, heat, cool, and light schools, resulting in energy efficiencies and conservation, compiled by the National Clearinghouse for Educational Facilities.


References to Books and Other Media

Senate Bill 1149 Energy Surcharge: Unrealized Savings on Energy and School Utility Costs Adobe PDF
(Oregon Department of Energy, May 01, 2012)
Passed by the Oregon Legislature in 1999, Senate Bill 1149 created a 3% surcharge on electricity bills to fund energy conservation programs, renewable energy resources, low- income weatherization, and energy conservation in schools. This audit determines whether Oregon school districts have utilized energy surcharge funds to implement measures with the highest paybacks. Analysis of 6,859 energy efficiency measures from 2002-2010 found that school districts did not consistently implement the most cost-effective measures or realize the greatest energy savings. Had districts implemented the top-ranked measures instead, they could potentially have achieved almost $40 million more in anticipated district utility bill savings and gained an additional 70% energy reduction over the collective lives of the measures compared to the estimated results of those measures that were actually implemented. 19p

Rooftop Revolution. How Solar Panels on Public School Rooftops Can Jumpstart the Local Green Collar Economy and Dramatically Expand Renewable Energy in New York City Adobe PDF
Stringer, Scott
(Office of the Manhattan Borough President, Jan 2012)
Describes how New York City's public school system, the nation's largest, could be a launching pad for the expansion of solar energy in the city, using structured Power Purchase Agreements. Report presents data showing installation of solar panels on the rooftops of 1,094 school buildings could host 169.46 megawatts of clean, renewable energy and eliminate 76,696 tons of carbon from the air each year. Report also suggests that the Department of Education should develop curriculum for all schools focused on solar and other forms of renewable energy. 32p

Building Energy- Efficient Schools in New Orleans Adobe PDF
(U. S. Department of Energy, Energy Efficiency & Renewable Energy, Dec 2011)
This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. The experiences of four new schools—Langston Hughes Elementary School, Andrew H. Wilson Elementary School (which was 50% new construction and 50% major renovation), L.B. Landry High School, and Lake Area High School—and one major renovation, Joseph A. Craig Elementary School—are described to help other school districts and design teams with their in-progress and future school building projects in hot-humid climates. 23p

LBJ NetZero Middle School
Sole, John
(Guerilla Educators, Nov 2011)
On November, 11-12, educational facilities planners from CEFPI had the opportunity to visit and participate in a NetZero Symposium at the Lady Bird Johnson Middle School, located in Irving, Texas. In this video, a tour of the school is given by Alejandro, a student there. The school is virtually paperless and produces more energy than it uses which is then sold back to the local utility company.

50% Advanced Energy Design Guide for K-12 School Buildings
(ASHRAE, the American Institute of Architects, the Illuminating Engineering Society of North America, and the U.S. Green Building Council, with support from the Department of Energy, Oct 2011)
Guide provides a sensible approach to easily achieve advanced levels of energy savings in K-12 school buildings without having to resort to detailed calculations or analysis. Covers administrative and office, classrooms, hallways, restrooms, gymnasiums, assembly, libraries, food preparation and dining areas. Case studies and technical examples throughout the guide illustrate the recommendations and demonstrate the technologies in real-world applications. Includes recommendations for practical products and off-the-shelf technology needed for achieving a 50% energy savings compared to buildings that meet the minimum requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. The energy savings target of 50% is the first step in the process toward achieving a net-zero energy building, which is defined as a building that, on an annual basis, draws from outside resources equal or less energy than it provides using on-site renewable energy sources.

Solar Schools Assessment and Implementation Project: Financing Options for Solar Installations on K-12 Schools. Adobe PDF
Coughlin, J.; Kandt, A.
(U.S. Department of Energy, National Renewable Energy Laboratory, Golden, CO, Oct 2011)
Details best practices for financing and installing photovoltaic (PV) systems on school buildings. The report focuses on financial options developed specifically for renewable energy and energy efficiency projects. Some highlights of the report include: an introduction to financing PV installations on schools; a look at the direct-ownership option, which takes advantage of financing mechanisms such as general funds, bonds, construction funds, and grants; and a review of the third-party finance model, including power purchase agreements and energy services performance contracts. In addition to comparing a range of financing options for PV installations, the report provides real-world examples of financing solar installations on K-12 schools and other public facilities. These examples may be used by school districts around the country to help them navigate the process of financing PV installations. 38p

Sensitivity Analysis: Comparing the Impact of Design, Operation, and Tenant Behavior on Building Energy Performance Adobe PDF
Heller, Jonathan; Heater, Morgan; Ecotope, Mark Frankel
(New Buildings Institute, Jul 2011)
This study compares the magnitude of energy impact that various design features, operations and tenant behaviors have on total building energy use. Study finds that although the market generally assigns responsibility for building energy performance to the design team, operational and tenant practices have a very significant impact on building energy use. Summarizes the extent to which operations and occupant behavior impact a building's energy use compared to design characteristics, such as aspects the building envelope, HVAC systems and lighting system features. It examines how buildings use energy and what aspects of building energy performance need more attention in design, operation and policy strategies. The findings of this study can help the building community begin to align their priorities with those building features and operational characteristics that have the most impact on building energy use. 81p

Building R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program. Adobe PDF
(U.S. Dept. of Energy, Washington, DC , May 2011)
Identifies and characterizes commercially available products and emerging technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects sponsored by BTP's Emerging Technologies subprogram from 2005-2009. To perform this analysis, Pacific Northwest National Laboratory (PNNL) investigated 190 technology R&D projects funded directly by the Emerging Technologies subprogram or via the Small Business Innovation Research and Small Business Technology Transfer programs. This effort identified 11 commercially available products, 41 emerging technologies, and 68 potential technologies that are still being researched but are more than three years away from commercialization. The report documents the methodology and results of PNNL?s technology tracking effort, including various analytical cross-sections and descriptions of the commercially available and emerging technologies that resulted from support of the Emerging Technologies subprogram from 2005-2009. 122p.

Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts. Adobe PDF
Kandt, Alicen
(NREL, Apr 2011)
The Solar Schools Assessment and Implementation Project(SSAIP) in the San Francisco Bay Area was selected for a 2009 DOE Solar America Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted from this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund,and implement solar photovoltaics (PV) projects in school districts across the country

A Textbook Example: Why American Schools Must Go Green.
(RenewableEnergyWorld.com , Sep 08, 2010)
Profiles a public/private partnership, assisted by grants, that enabled a Connecticut school to install a photovoltaic array on its roof at no cost to the district, while allowing immediate access to cheaper electricity that will save $25,000 in the first year alone. 2p.

School Financing Options for Energy Projects. Adobe PDF
Skiver, Neal; Hill,Craig
(Solar Schools Forum, Mar 26, 2010)
Outlines the big picture for school district renewable energy project financing, describing how to pay for a project and the financing tools available, the parties involved in a school district energy project, and two basic ownership strategies. 19p.

Bagley Nature Area Classroom Pavilion.
(McGraw-Hill, New York, NY, 2010)
Presents a tour of a humble LEED-Platinum classroom, at the University of Minnesota in Duluth, that has the ambitious goals of net-zero energy and Passive House certification. The Passive House standard's founder Dr. Wolfgang Feist and members of the design team explain reliance on passive strategies more than technological ones. The building demonstrates leadership in energy efficiency, renewable energy, wastewater treatment, stormwater management, passive heating, natural ventilation, water efficiency, local and renewable materials, and a healthy indoor environment.

References to Journal Articles

Thinking Green Mindset Changes That Make a Difference
University Business; Jun 2012
Shares ideas that have resulted in changes in the way campuses think about food, water, energy consumption, and solar energy. Sections include: 1) water woes: eliminating wasteful habits; 2) dining hall dilemma: changing the way campuses think about food; 3) solar farms sprouting up on campuses; 4) energy dashboards promote responsible usage; and 5) sustainable solutions.

Working With the Wind
Cortese, Anthony
College Planning and Management; , p66-67 ; Jun 2012
Colleges and universities are discovering the many benefits of wind turbines.

Biomass Heating--Should You Consider It for Your Campus Adobe PDF
Abbe Bjorklund, Chip Lederer, Rich Ney
Facilities Manager; May-Jun 2012
Reviews compelling reasons for considering and challenges to be addressed for using biomass (typically wood chips) as an alternative fuel source for heating campuses.

CEED Becomes First Public School to Use Passivhaus Technology in the U.S.
Sims, Torrey
School Construction News; Apr 2012
The Center of Energy Efficient Design in Rocky Mount, Va., is the first public school to use the energy-efficient Passivhaus technology, which has enabled it to use 68 percent less energy than conventional schools. CEED was designed as a demonstration school to show students and future developers Passivhaus’ impact on design when it comes to sustainability and cost-saving results.

NZEB in Progress. Adobe PDF
Barrett, Laura and Jefferson, Pete
High Performing Buildings; , p6-20 ; Spring 2012
Case study of the Evie Garrett Dennis Campus in Denver, a multi-school K-12 campus that takes first steps toward achieving net zero energy.

Below the Surface
Fickes, Michael
College Planning and Management; , p40-44 ; Apr 2012
Ball State University's geothermal heating and cooling system will save $2M per year and produce a host of environmental benefits.

Energy Advantages for Green Schools
Griffin, J. Tim
American School and University; Apr 2012
The scale of district energy systems provides opportunities to generate and deliver energy to school buildings in a more sustainable manner. Renewable energy, combined heat and power (CHP), and thermal energy storage—often are expensive to install and impractical to maintain within a proposed building’s site. Because of the scale of district energy, these challenges can be overcome when installing them within the district energy system itself.

Solar Heating Considerations for Green Schools
Kelley, Brian and Fiedler, Lon
American School and University; Apr 01, 2012
Understanding the process of installing solar thermal systems can help schools determine whether it will meet needs now and into the future. Includes a solar checklist of Issues to consider when determining whether a campus is a viable candidate for a solar heating system:

Going Solar With Confidence
Kollie, Ellen
School Planning and Management; , p27-32 ; Apr 2012
Provides two examples that demonstrate the success of solar energy, one at an individual high school, and the other is within a district.

Going Solo
Selleck, Paula
College Planning and Management; , p30-34 ; Apr 2012
Case study of California State Fullerton solar project that reaps profits and energy savings.

Energy Management: Key Success Elements
Woodroof, Eric
Buildings; Mar 2012
This article describes key success elements for an energy management program, many of which originate from other industries. Elements include: Treat Energy as a Business Issue… that has a Plan; Have a Bottom Line Perspective; Consider the Relatively Low Risk of Energy Management Programs/Projects; and Apply Full Dollarization and Professional Management.

Operational Versus Designed Performance of Low Carbon Schools in England: Bridging a Credibility Gap
Amrita Dasguptaa, Antonis Prodromoub & Dejan Mumovicc
HVAC&R Research; v18 n2 , p37-50 ; Feb 29, 2012
In the UK, schools alone are responsible for 15% of the energy consumption in public and commercial buildings. The recent studies showed that newly built schools are failing to meet even basic performance criteria related to both energy consumption and provision of indoor environmental quality (acoustics, indoor air quality, thermal comfort, and lighting). The main objectives of this article are three-fold: (a) to review the results of three major studies related to operational performance of newly built schools in England, (b) to identify major issues of importance for energy efficient provision of indoor environmental quality in school buildings based on results of a comprehensive survey of 286 UK building professionals, and (c) to estimate the influence of uncertainty of some design parameters on energy consumption using differential sensitivity analysis. The article concludes that our current ongoing efforts to deliver low carbon school buildings conducive to learning have had little success due to a poor understanding of how to design, engineer, and facilitate learning spaces for changing pedagogical practices to support a mass education system. Major identified issues refer to aspects of policy, design, and commisioning that affects building performance. [Authors' abstract]

Net-zero Energy Building Schools
Wim Zeiler, Gert Boxem
Renewable Energy; Feb 23, 2012
In the Netherlands with respect to sustainable educational building the main focus has been on energy saving. Recently some schools were built as rather environmental friendly schools with more attention to comfort and health aspects. The first NZEB designed school is analyzed and the results compared with other more traditional schools. With all the enthusiasm for NZEB buildings it is good to look into the pro and cons. In the past important necessary technological and organizational changes were frustrated and thus delayed as people only focused on the positive aspects and forgot about the possible negative aspects. This then resulted in disappointing pilot projects. Therefore the article will give a list of advantages and disadvantages and will come up with recommendations to gain more and lose less in the process of doing so. The way to approach the design task is to look for win–win situations, find those solutions which increases the advantages of NZEB while at the same time improve some of the NZEB disadvantages characteristics.[Authors' abstract]

Designing and Constructing an Exemplar Zero Carbon Primary School in the City of Exeter, United Kingdom
Tatchell, Arthur
CELE Exchange; , 6p ; Jan 2012
Montgomery Primary School is the UK’s first zero carbon in use and climate-change-ready exemplar school built to the Passivhaus standard. Its design and solar generating electrical power plant enable its electricity bill to be zero each year.

Solar Success at Colorado State
Wilmsen, Emily Narvaes
College Planning and Management; , p102 ; Jan 2012
Colorado State University's major renewable campus project includes large solar installations.

First Geothermal Energy System in Checotah School District
School Construction News; Dec 28, 2011
Describes Checotah Public Schools' $15.4 million high school construction project that will be powered by geothermal energy, a renewable resource. While the Oklahoma school will save money over time, adding the geothermal system cost $1 million more.

Solar Heads to School
Potovsky, David
School Construction News; Dec 2011
For many schools, a solar power installation or solar energy system can provide long-term budget relief. Ample land, unobstructed expanses of roof space, parking lots and/or lunch quads can make implementing a solar energy system a good choice. Describes the challenges that need to be considered in evaluating solar options.

All Systems Go For Net-Zero.
Sharpe, Stephen
Eco-Structure; Nov 21, 2011
Discusses Lady Bird Johnson Middle School in Irving, Texas, where extensive efforts were made to design and build the nation’s largest net-zero-energy public K–12 school.

Looking Up.
Berman, Scott
School Planning and Management; Nov 2011
Discusses school districts transforming their open spaces by looking up — to their roofs - transforming what can be a functional afterthought into a new asset in order to advance strategic goals. Points to solar arrays and other green energy, green roofs and new educational and recreational spaces, all presenting myriad options and variables.

Solar Growth Documented on Higher-Education Campuses
American School and University; , 1p ; Oct 07, 2011
Describes the Campus Solar Photovoltaic Installations database compiled by the Association for the Advancement of Sustainability in Higher Education(AASHE). Solar power capacity on higher-education campuses has grown 450 percent over the last three years. It attributes the increase solar installations to a 40 percent drop in the installed cost of solar over the last four years and new financing mechanisms.

Solar Power Excelling at U.S. Schools.
Renewable Energy World; Sep 19, 2011
As schools battle with budget deficits and look to educate students about renewable energy, there has been a wave of new solar projects at schools across the country. This rapidly growing market has attracted the attention of solar developers.

A Zero Utility Bill Building.
Morton, Jennie
Buildings; v105 n9 , p22-24 ; Sep 2011
The Sustainable Living Center (SLC) in Fairfield, Iowa was commissioned by the Maharishi University of Management. The facility is a forward-looking project that draws from an “East Meets West” approach to sustainability, and is the first to integrate four separate building challenges: LEED Platinum, the Living Building Challenge, Building Biology, and Maharishi Vedic Architecture. The 6,900-square-foot building is off-grid for electricity, water, and sewer.

Roofing: A Passing Grade.
Matt, Chris
Maintenance Solutions; v19 n8 , p12,14,15 ; Aug 2011
Describes how bad publicity concerning Scottsdale Schools' failing roofs led to positive steps taken to rectify the situation. Steps included preventive maintenance, finding funding for repair and upkeep, and introduction of solar installations.

Colleges, Universities, and Renewable Energy: A Perfect Match.
Mann, Michael J.; Reinstein, Todd R.
University Business; Jun 2011
Discusses the benefits associated with the development of on-site, “green” energy systems—solar photovoltaic systems, wind power systems, and cogeneration facilities, including reduced energy costs, enhanced service reliability, and a smaller carbon footprint.

The Solar College: Generating Savings with Green Technologies.
Campus Technology; May 12, 2011
Describes how Santa Barbara City College has shaved $650,000 off of its energy expenses with a few strategic moves, including solar panels that double as cover for parking and Web-based software for micromanaging lighting and mechanical energy use.

Going Solar.
Domine, Mark
American School and University; v83 n8 , p34,36,38,39 ; May 2011
Describes cost savings to a school by using solar power. The article also addresses financing options and available rebates.

Renewable-Energy Systems: Practical Considerations.
Piper, James
Maintenance Solutions; v19 n5 , p23 ; May 2011
Advises institutions considering installation of renewable energy sources on how to work with local utilities and maintain systems.

Clean and Green at UNT.
Price, Buddy
College Planning and Management; v14 n5 , p67,68 ; May 2011
Profiles the on-campus wind turbine system that will be used to power the University of North Texas's new stadium, as well as a number of other campus buildings.

Solar-Powered Waste Collection.
Del Vecchio, Bill
College Planning and Management; v14 n4 , p76-79 ; Apr 2011
Describes solar-powered recycling compactors that can retain large amounts of recyclables in a normal-sized bin. The example of their deployment at Georgetown University is used to describe their high capacity, low maintenance, wireless networked communication, and vermin resistance. Less frequent need for emptying has contributed to less noise and air pollution from trash collection vehicles, as well as savings in waste personnel and vehicle costs.

Going Solar in Green Schools.
Domine, Mark
American School and University; Apr 2011
Outlines the top considerations for education facilities looking to bring solar power to campus, including financing options and partnerships.

Sedona School District Goes Solar.
Kollie, Ellen
School Planning and Management; v50 n4 , p20-22,24,26,28 ; Apr 2011
Profiles several photovoltaic panel installations in this Arizona district, ranging from small rooftop arrays to a large 806 kilowatt array installed on the high school grounds. Energy savings, estimated payback, system lifespan, and arrangements with the local utility are discussed.

No More "What Ifs."
Smith, Susan
School Planning and Management; v50 n4 , p58,60,62 ; Apr 2011
Explores many elements that contribute to a "net zero" school that uses no more energy than it produces. Geothermal systems, water harvesting, wind energy, and use of the school as a teaching tool are addressed.

Going Bold, Going Green.
Willyerd, Scott
College Planning and Management; v14 n4 , p83-86 ; Apr 2011
Profiles sustainability efforts at Messiah College, which include extensive use of solar hot water and photovoltaics, a community garden, using environmentally sound paper, updating HVAC systems, and implementing sustainable practices in the surrounding community.

Engineering a Sustainable School.
Beddow, Bruce
Consulting-Specifying Engineer; Mar 08, 2011
Details the design of a school HVAC upgrade that included a geo-solar system. Engineers designed a system that was architecturally integrated, offering students a unique learning tool. The article includes charts that illustrate energy use and the anticipated time for the recovery of the investment is discussed.

Geothermal Grows Up. Adobe PDF
Johnson, William; Kraemer, Steven; Ormand, Paul
Facilities Manager; v27 n2 , p36-40 ; Mar-Apr 2011
Reviews the past and future of the geothermal industry, with emphasis on how higher education institutions are benefitting from these systems. Unfortunate examples of early systems that were not properly designed are accompanied by success stories of later systems that have performed adequately, even when the budget prohibited building a system of ideal size. Recent important advances include reducing the necessary well field size and hybrid geothermal/conventional systems.

Sunlighting the Way: University Solar Fields on the Rise.
Kamal, Sameaa
School Construction News; v17 n2 , p12,13 ; Mar-Apr 2011
Describes significant photovoltaic installations at Colorado State University and the University of Arizona. Bidding, contracting, and funding issues are discussed, as are the benefits and the agreements concluded with the investors and utility companies.

Wyoming School Draws from Museum Design and Local Landscape.
Gosling, Nicholas
School Construction News; v17 n1 , p11,12 ; Jan-Feb 2011
Profiles this Casper elementary school that features a rooftop solar installation, a geothermal system, flexible classrooms organized around "houses" for each grade, and a central area that serves as cafeteria, theatre, gymnasium, and community gathering space.

Windfall?
Gregerson, John
Buildings; v104 n11 , p42-44 ; Nov 2010
Discusses different designs of wind turbines, with emphasis on vertical axis models that can capture wind power from a variety of directions, as is often the case in urban settings where wind direction is unreliable.

Seeing the Light.
Kollie, Ellen
College Planning and Management; v13 n11 , p29,31-33 ; Nov 2010
Profiles the unique lighting of the University of California San Diego Sustainable Research Center. Photovoltaic panels on the roof supply the DC-DC lighting system, augmented by daylight and electricity from the campus grid after dark. Photoluminescent exit signs use no electricity at all.

Renewable Resources.
Shaw, Frank
American School and University; v83 n3 , p224-226,228 ; Nov 2010
Describes economic incentives and federal benefits of implementing the use of renewable energy sources. Examples of programs at six universities are briefly described. Also described are strategies for implementing renewable energy sources on campuses, as well as financing and ownership options.

An FM's Guide to Solar Power.
Stanley, Bernie
Facility Management Journal; v20 n6 , p67-69 ; Nov-Dec 2010
Discusses options for capturing solar energy through photovoltaics and solar-heated water. Required calculations for proper positioning of solar arrays, types of systems, installation issues, and alternatives to roof-mounted arrays are addressed.

Expectations for a Greener Tomorrow.
Buildings; v104 n10 , p50,51 ; Oct 2010
Profiles the North American Wind Research and Training Center at Mesalands Community College. The facility features a large, commercial-grade wind turbine that supplies electricity to the entire campus.

Plugging into the Earth.
Pratapchandran, Sarat
School Planning and Management; v49 n10 , p20,22,24-31 ; Oct 2010
Discusses the widening use of geothermal HVAC systems in schools, addressing the savings realized by several schools that use them and the lack of widespread engineering knowledge for these systems.

The "Elements" of a Healthy Campus.
Przyborowski, Danielle
College Planning and Management; v13 n10 , p33,34,36,38 ; Oct 2010
Describes conservation efforts at three higher education institutions: intensive composting at Bastyr University, a wind turbine a Macalester College, and water reclamation at Sonoma State University.

Roofing Hot-Button: Photovoltaic Systems.
Mattison, Kent
Maintenance Solutions; v18 n8 , p16,17 ; Aug 2010
Discusses advantages of conversion to alternative, renewable energy sources. These include financial savings, environmental advantages, reliability, hedge against rate hikes, peak energy savings, public relations, and national security. The article also lists important questions regarding the physical feasibility and economics of installing the system.

Green Dot Animo Leadership Charter High School.
Architype Review; v4 n3 ; Jul 2010
Profiles this Lennox, California, facility. The small site near a freeway was addressed with an inner courtyard design, featuring 650 solar panels. A list of project participants, photographs, and plans are included.

Going Solar.
Raeke, Richard
Facility Management Journal; v20 n4 , p50-52 ; Jul-Aug 2010
Advises on using a power purchase agreement (PPA) to obtain photovoltaic electricity. Under these agreements, a PPA provider pays for the photovoltaic system, with the building owner agreeing to purchase electricity from them. Basic costs, tax incentives, and appropriate locations for photovoltaic arrays are addressed.

On the Use of Windcatchers in Schools: Climate Change, Occupancy Patterns, and Adaptation Strategies.
Mavrogianni, A.; Mumovic, D.
Indoor and Built Environment; v 9 n 3 , 340-354 ; Jun 2010
Focuses on use of a windcatcher system in typical classrooms which are usually characterized by high and intermittent internal heat gains. The aims of this paper are 3-fold. First, to describe a series of field measurements that investigated the ventilation rates, indoor air quality, and thermal comfort in a newly constructed school located at an urban site in London. Secondly, to investigate the effect of changing climate and occupancy patterns on thermal comfort in selected classrooms, while taking into account adaptive potential of this specific ventilation strategy. Thirdly, to assess performance of the ventilation system using the newly introduced performance-based ventilation standards for school buildings. The results suggest that satisfactory occupant comfort levels could be achieved until the 2050s by a combination of advanced ventilation control settings and informed occupant behavior. [author's abstract]
TO ORDER: http://ibe.sagepub.com/content/19/3/340.abstract

Geothermal for School.
AHRAE Journal; v52 n5 , p40-42,44 ; May 2010
Details the planning and building of geothermal exchange system for HVAC at Whitmore Lake High School, Ann Arbor, Michigan. Details include building layout to accommodate zone sensors and unitary heat pumps and moisture-resistant fabric ductwork. Results include very little consumption of natural gas. Green innovation in restroom facility design and processes for kitchen's refrigeration and freezing result in other cost-savings.

Analyzing the Alternatives.
Grayson, Jennifer
Campus Technology; v23 n8 , p30,32,34,36,37 ; Apr 2010
Describes progress toward photovoltaic energy at three universities. Photovoltaic panels as well as energy conservation measures are described, as are connections to the respective IT departments for monitoring of energy generation.

Mod Genius.
Grayson, Jennifer
T.H.E. Journal; v37 n4 , p28-30, 32-34 ; Apr 2010
Discusses how innovative building manufacturers are designing new modular classrooms that offer a range of eco-friendly features, an inspiring learning environment, and the right price. Examines the idea of the building as a teaching tool. The energy-neutral modular building by Project Frog is outfitted with 60 solar panels that generate enough electricity to power the structure, with perhaps a surplus.

Photo Finish.
Hadian, Ali; Sedighi, Ben
American School and University; v82 n7 , p32-35 ; Mar 2010
Discusses the possibilities for photovoltaic systems on schools. Options for procuring a system, design on new and existing buildings, and choosing the right system is addressed.

Seizing Sustainability.
Gawlik, Kate
Environmental Design and Construction; v13 n2 , p20 ; Feb 2010
Profiles the installation of a photovoltaic system on a Providence College roof. The specifications and aesthetics of the system are discussed, as is the building addition on which it was installed.

The Surges of Green Power.
Gregerson, John
Buildings; v104 n2 , p34-36 ; Feb 2010
Describes the back-and-forth advancement of clean energy resources, largely due to its higher cost and lower affordability during economic slowdowns. Examples of current commitments to renewable energy sources are included.

BIM and Life-Cycle Analysis Help Determine Value of Green Strategies.
Niewoehner, Daniel
R&D Magazine; v15 n2 , p1-4 ; Feb 2010
Reviews six strategies used to assess the value of energy-saving features in a laboratory model. The return on investment, annual cost savings, and cost per LEED credit is described for heat recovery, a ground source heat pump, glazing, wind turbines, a high efficiencies boiler, photovoltaics, chilled beam cooling, and a green roof.

Renewable Energy Perspective.
Qualk, James
Environmental Design and Construction; v13 n2 , p22-26 ; Feb 2010
Discusses the current mix of electricity generated from traditional versus renewable sources, the growing potential and percentage of renewable energy in the mix, and what is needed in the way of legislation and market transformation to continue the trend.

Wind Power: An Emerging Choice for Schools.
Hiserodt, Lisa
School Construction News; v16 n1 , p11,22 ; Jan-Feb 2010
Discusses the potential for wind energy at schools, particularly in the Midwest, turbine types and selection, and addressing local resistance to windmill installation.

Knowing How to Measure a Green Building Can Help Sell Renewable Energy.
Nutcher, Paul
Design Cost Data; v54 n1 , p5,9,18 ; Jan-Feb 2010
Discusses rating systems that help verify energy savings and promote renewable energy. The LEED and ASHRAE systems are discussed, with respective attention to the versions of LEED for new and existing buildings.

Lean, Mean and Green: An Affordable Net Zero School. Adobe PDF
Stanfield, Kenneth
Educational Facility Planner; v44 n2,3 ; 2010
Discusses the design of Richardsville Elementary in Kentucky, to be an affordable net zero facility. By reducing energy use to 19.31 kBtus annually, the net zero goal could be realized through the implementation of a solar array capable of producing enough energy to meet the school's operating demands. Coupled with the goal of a LEED certified facility, the building's components were identified and implemented to affordably attain a facility that demonstrates a sustainable site, net zero energy, water efficiency, materials and resources conservation, and an indoor/outdoor environment that promotes a healthy, progressive learning atmosphere while reducing life cycle maintenance costs and zeroing out electricity costs.


COMMENT ON THIS PAGE

Notice

Due to lack of funding, the National Clearinghouse for Educational Facilities is currently available only as an archived site. As of September 1, 2012 no new content will be added or updates made. We regret the need to take such steps, but should funding become available, we look forward to reinvigorating NCEF and providing this valuable resource to the educational facilities community.

If you have questions or are an organization or company wishing to support the continued operation of this industry recognized resource please contact Institute President Henry Green (hgreen@nibs.org, 202-289-7800).